There is a growing interest in BiFeO3-based alloys because of the possibility it offers for developing high-temperature high-performance piezoelectric materials and for their interesting multiferroic properties. Often such ceramics are synthesized with additives either to reduce/suppress leakage current that the system inherits from the parent compound BiFeO3 or to promote sintering via formation of the liquid phase. We demonstrate here the propensity for stabilizing ferromagnetism in the ferroelectric solid solution BiFeO3–PbTiO3 (BF–PT) when synthesized with additive MnO2. Detailed investigation revealed that the ferromagnetic property of the ceramic is extrinsic and caused by the additive enabled precipitation of trace amount of the ferrimagnetic Pb-hexaferrite phase, not easily detected in conventional x-ray diffraction measurements. We also show that the ferromagnetic property is induced in Co-modified BF–PT. However, in this case, the additive stabilizes the CoFe2O4 spinel ferrite phase. While our findings offer a strategy to develop particulate magnetoelectric multiferroic composites using additive assisted precipitation of the ferrimagnetic phase(s) in BiFeO3-based ferroelectric alloys, it also helps in better understanding of the electromechanical response in BFO-based alloys.

1.
C.
Ederer
and
N. A.
Spaldin
, “
Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite
,”
Phys. Rev. B
71
,
060401(R)
(
2005
).
2.
S.
Gupta
,
A.
Garg
,
D. C.
Agrawal
,
S.
Bhattacharjee
, and
D.
Pandey
, “
Structural changes and ferroelectric properties of BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method
,”
J. Appl. Phys.
105
,
014101
(
2009
).
3.
J.
Zhuang
,
J.
Zhao
,
L.-W.
Su
,
H.
Wu
,
A. A.
Bokov
,
W.
Ren
, and
Z.-G.
Ye
, “
Structure and local polar domains of dy-modified BiFeO3–PbTiO3 multiferroic solid solutions
,”
J. Mater. Chem. C
3
,
12450
12456
(
2015
).
4.
J.
Bennett
,
A. J.
Bell
,
T. J.
Stevenson
, and
T. P.
Comyn
, “
Exceptionally large piezoelectric strains in BiFeO3-(K0.5Bi0.5)TiO3-PbTiO3 ceramics
,”
Scr. Mater.
68
,
491
494
(
2013
).
5.
H.
Zheng
,
F.
Straub
,
Q.
Zhan
,
P.-L.
Yang
,
W:-K
Hsieh
,
F.
Zavaliche
,
Y.-H.
Chu
,
U.
Dahmen
, and
R.
Ramesh
, “
Self-Assembled growth of BiFeO3-CoFe2O4 nanostructures
,”
Adv. Mater.
18
,
2747
2752
(
2006
).
6.
D.
Wang
,
A.
Khesro
,
S.
Murakami
,
A.
Feteira
,
Q.
Zhaoc
, and
I. M.
Reaney
, “
Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics
,”
J. Eur. Ceram. Soc.
37
,
1857
1860
(
2017
).
7.
W.
Eerenstein
,
F. D.
Morrison
,
F.
Sher
,
J. L.
Prieto
,
J. P.
Attfield
,
J. F.
Scott
, and
N. D.
Mathur
, “
Experimental difficulties and artefacts in multiferroic and magnetoelectric thin films of BiFeO3, Bi0.6Tb0.3La0.1FeO3 and BiMnO3
,”
Philos. Mag. Lett.
87
,
249
257
(
2007
).
8.
L.
Yan
,
Z.
Wang
,
Z.
Xing
,
J.
Li
, and
D.
Viehland
, “
Magnetoelectric and multiferroic properties of variously oriented epitaxial nanostructured thin films
,”
J. Appl. Phys.
107
,
064106
(
2010
).
9.
G. A.
Smolenskii
and
I.
Chupis
, “
Ferroelectromagnets
,”
Sov. Phys. Usp.
25
,
475
493
(
1982
).
10.
I.
Sosnowska
,
T.
Peterlin-Neumaier
, and
E.
Steichele
, “
Spiral magnetic ordering in bismuth ferrite
,”
J. Phys. C: Solid State Phys.
15
,
4835
4846
(
1982
).
11.
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S. B.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D. G.
Schlom
,
U. V.
Waghmare
,
N. A.
Spaldin
,
K. M.
Rabe
,
M.
Wuttig
, and
R.
Ramesh
, “
Epitaxial BiFeO3 multiferroic thin film heterostructures
,”
Science
299
,
1719
1722
, (
2003
).
12.
T.
Zhao
,
A.
Scholl
,
F.
Zavaliche
,
K.
Lee
,
M.
Barry
,
A.
Doran
,
M. P.
Cruz
,
Y. H.
Chu
,
C.
Ederer
,
N. A.
Spaldin
,
R. R.
Das
,
D. M.
Kim
,
S. H.
Baek
,
C. B.
Eom
, and
R.
Ramesh
, “
Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature
,”
Nat. Mater.
5
,
823
829
(
2006
).
13.
C:-Y
Kuo
,
Z.
Hu
,
J. C.
Yang
,
S.-C.
Liao
,
Y. L.
Huang
,
R. K.
Vasudevan
,
M. B.
Okatan
,
S.
Jesse
,
S. V.
Kalinin
,
L.
Li
,
H. J.
Liu
,
C.-H.
Lai
,
T. W.
Pi
,
S.
Agrestini
,
K.
Chen
,
P.
Ohresser
,
A.
Tanaka
,
L. H.
Tjeng
, and
Y. H.
Chu
, “
Single-domain multiferroic BiFeO3 films
,”
Nat. Commun.
7
,
12712
(
2016
).
14.
T:-J
Park
,
G. C.
Papaefthymiou
,
A. J.
Viescas
,
A. R.
Moodenbaugh
, and
S. S.
Wong
, “
Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles
,”
Nano Lett.
7
,
766
772
(
2007
).
15.
L. F.
Cótica
,
F. R.
Estrada
,
V. F.
Freitas
,
G. S.
Dias
,
I. A.
Santos
,
J. A.
Eiras
, and
D.
Garcia
, “
Ferroic states in La doped BiFeO3-PbTiO3 multiferroic compounds
,”
J. Appl. Phys.
111
,
114105
(
2012
).
16.
R.
Guo
,
L.
Fang
,
W.
Dong
,
F.
Zheng
, and
M.
Shen
, “
Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles
,”
J. Phys. Chem. C
114
,
21390
21396
(
2010
).
17.
B.
Xu
,
D.
Wang
,
J.
Íñiguez
, and
L.
Bellaiche
, “
Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions
,”
Adv. Funct. Mater.
25
,
552
558
(
2015
).
18.
J.
Liu
,
L.
Fang
,
F.
Zheng
,
S.
Ju
, and
M.
Shen
, “
Enhancement of magnetization in Eu doped BiFeO3 nanoparticles
,”
Appl. Phys. Lett.
95
,
022511
(
2009
).
19.
D.
Kan
,
V.
Anbusathaiah
, and
I.
Takeuchi
, “
Chemical substitution-induced ferroelectric polarization rotation in BiFeO3
,”
Adv. Mater.
23
,
1765
1769
(
2011
).
20.
T.
Rojac
,
A.
Bencan
,
B.
Malic
,
G.
Tutuncu
,
J. L.
Jones
,
J. E.
Daniels
, and
D.
Damjanovic
, “
BiFeO3 ceramics: Processing, electrical, and electromechanical properties
,”
J. Am. Ceram. Soc.
97
,
1993
2011
(
2014
).
21.
S. T.
Zhang
,
M. H.
Lu
,
D.
Wu
,
Y. F.
Chen
, and
N. B.
Ming
, “
Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure
,”
Appl. Phys. Lett.
87
,
262907
(
2005
).
22.
J.
Chen
,
X.
Xing
,
A.
Watson
,
W.
Wang
,
R.
Yu
,
J.
Deng
,
L.
Yan
,
C.
Sun
, and
X.
Chen
, “
Rapid synthesis of multiferroic BiFeO3 single-crystalline nanostructures
,”
Chem. Mater.
19
,
3598
3600
(
2007
).
23.
T.
Rojac
,
M.
Kosec
,
B.
Budic
,
N.
Setter
, and
D.
Damjanovic
, “
Strong ferroelectric domain-wall pinning in BiFeO3 ceramics
,”
J. Appl. Phys.
108
,
074107
(
2010
).
24.
T. J.
Park
,
G. C.
Papaefthymiou
,
A. J.
Viesca
,
Y.
Lee
,
H.
Zhou
, and
S. S.
Wong
, “
Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures
,”
Phys. Rev. B
82
,
024431
(
2010
).
25.
A.
Singh
,
V.
Pandey
,
R. K.
Kotnala
, and
D.
Pandey
, “
Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO-0.1BaTiO3
,”
Phys. Rev. Lett.
101
,
247602
(
2008
).
26.
S.
Vura
,
P. S.
Anil Kumar
,
A.
Senyshyn
, and
R.
Ranjan
, “
Magneto-structural study of the multiferroic BiFeO3-SrTiO3
,”
J. Magn. Magn. Mater.
365
,
76
82
(
2014
).
27.
Z. Z.
Ma
,
Z. M.
Tian
,
J. Q.
Li
,
C. H.
Wang
,
S. X.
Huo
,
H. N.
Duan
, and
S. L.
Yuan
, “
Enhanced polarization and magnetization in multiferroic (1-x)BiFeO3-xSrTiO3 solid solution
,”
Solid State Sci.
13
,
2196
2200
(
2011
).
28.
K.
Singh
,
N. S.
Negi
,
R. K.
Kotnala
, and
M.
Singh
, “
Dielectric and magnetic properties of (BiFeO3)1-x(PbTiO3)x ferromagnetoelectric system
,”
Solid State Commun.
148
,
18
21
(
2008
).
29.
M. M.
Kumar
,
A.
Srinivas
, and
S. V.
Suryanarayana
, “
Structure property relations in BiFeO3/BaTiO3 solid solutions
,”
J. Appl. Phys.
87
,
855
862
(
2000
).
30.
I.
Calisir
and
D. A.
Hall
, “
Chemical heterogeneity and approaches to its control in BiFeO3-BaTiO3 lead-free ferroelectrics
,”
J. Mater. Chem. C
6
,
134
146
(
2018
).
31.
M.
Makarovič
,
J.
Walker
,
E.
Khomyakova
,
A.
Benčan
,
B.
Malič
, and
T.
Rojac
, “
Control of electrical conductivity in 0.7BiFeO3-0.3SrTiO3 ferroelectric ceramics via thermal treatment in nitrogen atmosphere and Mn doping
,” Informacije MIDEM
J. Microelectron. Electron. Compon. Mater.
46
,
154
159
(
2016
).
32.
S.
Bhattacharjee
and
D.
Pandey
, “
Stability of the various crystallographic phases of the multiferroic (1-x)BiFeO3-xPbTiO3 system as a function of composition and temperature
,”
J. Appl. Phys.
107
,
124112
(
2010
).
33.
H.
Amorín
,
C.
Correas
,
P.
Ramos
,
T.
Hungría
,
A.
Castro
, and
M.
Algueró
, “
Very high remnant polarization and phase-change electromechanical response of BiFeO3-PbTiO3 at the multiferroic morphotropic phase boundary
,”
Appl. Phys. Lett.
101
,
172908
(
2012
).
34.
J.
Zhuang
,
Z.
Tang
,
J.
Lu
,
A. A.
Bokov
,
N.
Zhang
,
S. P.
Kubrin
,
I. P.
Raevski
,
Z.
Luo
,
Q.
Lian
,
S.
Yang
,
W.
Ren
, and
Z.-G.
Ye
, “
Achieving Large Switchable Polarization and Enhanced Piezoelectric Response in BiFeO3-PbTiO3 Solid Solution Ceramics
,”
Adv. Electron. Mater.
8
,
2100883
(
2022
).
35.
Y. N.
Fedulov
,
S. A.
Pyatigorskaya
, and
I.
Venevtsev
, “
An investigation of the BiFeO3-SrTiO3 system
,”
Sov. Phys.-Crystallogr.
10
,
291
296
(
1965
).
36.
T.
Kanai
,
S.
Ohkoshi
,
A.
Nakajima
,
T.
Watanabe
, and
K.
Hashimoto
, “
A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1-x solid solution
,”
Adv. Mater.
13
,
487
490
(
2001
).
37.
T.
Zheng
,
J.
Wu
,
D.
Xiao
, and
J.
Zhu
, “
Recent development in lead-free perovskite piezoelectric bulk materials
,”
Prog. Mater. Sci.
98
,
552
624
(
2018
).
38.
V. A.
Khomchenko
,
D. V.
Karpinsky
,
S. I.
Latushka
,
A.
Franz
,
V. V.
Sikolenko
,
S. V.
Dubkov
,
M. V.
Silibin
, and
J. A.
Paixão
, “
The structural origin of composition-driven magnetic transformation in BiFeO3-based multiferroics: A neutron diffraction study
,”
J. Mater. Chem. C
7
,
6085
6090
(
2019
).
39.
D. A.
Rusakov
,
A. M.
Abakumov
,
K.
Yamaura
,
A. A.
Belik
,
G.
Van Tendeloo
, and
E.
Takayama-Muromach
, “
Structural evolution of the BiFeO3-LaFeO3 system
,”
Chem. Mater.
23
,
285
292
(
2011
).
40.
B.
Jaffe
,
W. R.
Cook
, Jr
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
New York
,
1971
).
41.
I.
Calisir
,
A. A.
Amirov
,
A. K.
Kleppe
, and
D. A.
Hall
, “
Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La3+ substitution strategy
,”
J. Mater. Chem. A
6
,
5378
5397
(
2018
).
42.
Y.
Wei
,
X.
Wang
,
J.
Jia
, and
X.
Wang
, “
Multiferroic and piezoelectric properties of 0.65BiFeO3-0.35BaTiO3 ceramic with pseudo-cubic symmetry
,”
Ceram. Int.
38
,
3499
3502
(
2012
).
43.
S.
Chandarak
,
S.
Pojprapai
,
S.
Srilomsak
,
P.
Jantaratana
,
S.
Rujirawat
, and
R.
Yimnirun
, “
Magnetoelectric properties of Cu- and Mn-doped 0.75BiFeO3-0.25BaTiO3 multiferroic ceramics
,”
Ferroelectrics
419
,
70
75
(
2011
).
44.
X:-H
Liu
,
Z.
Xu
,
S.-B.
Qu
,
X.-Y.
Wei
, and
J. L.
Chen
, “
Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3-0.3BaTiO3 solid solution
,”
Ceram. Int.
34
,
797
801
(
2008
).
45.
R. A. M.
Gotardo
,
D. S. F.
Viana
,
M.
Olzon-Dionysio
,
S. D.
Souza
,
D.
Garcia
,
J. A.
Eiras
,
M. F. S.
Alves
,
L. F.
Cótica
,
I. A.
Santos
, and
A. A.
Coelho
, “
Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions
,”
J. Appl. Phys.
112
,
104112
(
2012
).
46.
A.
Singh
,
A.
Senyshyn
,
H.
Fuess
,
S. J.
Kennedy
, and
D.
Pandey
, “
Magnetic transitions and site-disordered induced weak ferromagnetism in (1-x)BiFeO3-xBaTiO3
,”
Phys. Rev. B
89
,
024108
(
2014
).
47.
A.
Kumar
,
B.
Narayan
,
R.
Pachat
, and
R.
Ranjan
, “
Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite
,”
Phys. Rev. B
97
,
064103
(
2018
).
48.
A.
Kumar
,
A.
Kumar
,
S.
Saha
,
H.
Basumatary
, and
R.
Ranjan
, “
Ferromagnetism in the multiferroic alloy systems BiFeO3-BaTiO3 and BiFeO3-SrTiO3: Intrinsic or extrinsic?
,”
Appl. Phys. Lett.
114
,
022902
(
2019
).
49.
Y.
Guo
,
P.
Xiao
,
R.
Wen
,
Y.
Wan
,
Q.
Zheng
,
D.
Shi
,
K.
Ho Lam
,
M.
Liu
, and
D.
Lin
, “
Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics
,”
J. Mater. Chem. C
3
,
5811
5824
(
2015
).
50.
Y.
Wan
,
Y.
Li
,
Q.
Li
,
W.
Zhou
,
Q.
Zheng
,
X.
Wu
,
C.
Xu
,
B.
Zhu
, and
D.
Lin
, “
Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3-BaTiO3 multiferroic ceramics with MnO2 addition
,”
J. Am. Ceram. Soc.
97
,
1809
1818
(
2014
).
51.
S.
Saha
,
R. P.
Singh
,
Y.
Liu
,
A. B.
Swain
,
A.
Kumar
,
V.
Subramanian
,
A.
Arockiarajan
,
G.
Srinivasan
, and
R.
Ranjan
, “
Strain transfer in ferroelectric-ferrimagnetic magnetoelectric composite
,”
Phys. Rev. B
103
,
L140106
(
2021
).
52.
S. A.
Fedulov
,
P. B.
Ladyzhinskii
,
I. L.
Pyatigorskaya
, and
Y. N.
Venevetsev
, “
Complete phase diagram of PbTiO3-BiFeO3 system
,”
Sov. Phys. Solid State
6
,
375
378
(
1964
).
53.
D. I.
Woodward
,
I. M.
Reaney
,
R. E.
Eitel
, and
C. A.
Randall
, “
Crystal and domain structure of the BiFeO3-PbTiO3 solid solution
,”
J. Appl. Phys.
94
,
3313
3318
(
2003
).
54.
T. P.
Comyn
,
T.
Stevenson
,
M.
Al-Jawad
,
S. L.
Turner
,
R. I.
Smith
,
W. G.
Marshall
,
A. J.
Bell
, and
R.
Cywinski
, “
Phase-specific magnetic ordering in BiFeO3-PbTiO3
,”
Appl. Phys. Lett.
93
,
232901
(
2008
).
55.
R.
Ranjan
and
K. A.
Raju
, “
Unconventional mechanism of stabilization of a tetragonal phase in the perovskite ferroelectric (PbTiO3)1-x(BiFeO3)x
,”
Phys. Rev. B
82
,
054119
(
2010
).
56.
V.
Kothai
,
A.
Senyshyn
, and
R.
Ranjan
, “
Competing structural phase transition scenarios in the giant tetragonality ferroelectric BiFeO3-PbTiO3: Isostructural vs multiphase transition
,”
J. Appl. Phys.
113
,
084102
(
2013
).
57.
V.
Kothai
,
R. P.
Babu
, and
R.
Ranjan
, “
Metastable morphotropic phase boundary state in the multiferroic BiFeO3-PbTiO3
,”
J. Appl. Phys.
114
,
114102
(
2013
).
58.
V.
Kothai
,
B.
Narayan
,
K.
Brajesh
,
S. D.
Kaushik
,
V.
Siruguri
, and
R.
Ranjan
, “
Ferroelectric phase coexistence by crystallite size reduction in BiFeO3-PbTiO3
,”
Phys. Rev. B
90
,
155115
(
2014
).
59.
B.
Narayan
,
S.
Adhikari
,
G.
Madras
, and
R.
Ranjan
, “
Trapping a metastable ferroelectric phase by size reduction in semiconducting ferroelectric BiFeO3-PbTiO3 and Its implications for photocatalytic response
,”
Phys. Rev. Appl.
7
,
024018
(
2017
).
60.
B.
Narayan
,
Y. A.
Sorb
,
B.
Loukya
,
A.
Samanta
,
A.
Senyshyn
,
R.
Datta
,
A. K.
Singh
,
C.
Narayana
, and
R.
Ranjan
, “
Interferroelectric transition as another manifestation of intrinsic size effect in ferroelectrics
,”
Phys. Rev. B
94
,
104104
(
2016
).
61.
B.
Narayan
,
J.
Singh Malhotra
,
R.
Pandey
,
K.
Yaddanapudi
,
P.
Nukala
,
B.
Dkhil
,
A.
Senyshyn
, and
R.
Ranjan
, “
Electrostrain in excess of 1% in polycrystalline piezoelectrics
,”
Nat. Mater.
17
,
427
431
(
2018
).
62.
C.
Upadhyay
,
P. K.
Harijan
,
A.
Senyshyn
,
R.
Ranganathan
, and
D.
Pandey
, “
Extraordinary enhancement of Néel transition temperature in nanoparticles of multiferroic tetragonal compositions of (1-x)BiFeO3-xPbTiO3 solid solutions
,”
Appl. Phys. Lett.
106
,
093103
(
2015
).
63.
V. F.
Freitas
,
L. F.
Cótica
,
I. A.
Santos
,
D.
Garcia
, and
J. A.
Eiras
, “
Synthesis and multiferroism in mechanically processed BiFeO3-PbTiO3 ceramics
,”
J. Eur. Ceram. Soc.
31
,
2965
2973
(
2011
).
64.
J.
Rodrígues-Carvajal
,
FULLPROF, A Rietveld Refinement and Pattern Matching Analysis Program
[
Laboratories Leon Brillouin (CEA-CNRS)
,
2000
].
65.
G.-L.
Tan
and
W.
Li
, “
Ferroelectricity and ferromagnetism of M-type lead hexaferrite
,”
J. Am. Ceram. Soc.
98
,
1812
1817
(
2015
).
66.
S.
Saha
,
R. P.
Singh
,
A.
Kumar
,
A.
De
,
P.
Pandey
,
B.
Narayan
,
H.
Basumatary
,
A.
Senyshyn
, and
R.
Ranjan
, “
Magnetic enhancement of ferroelectric polarization in a particulate multiferroic composite derived in situ via additive assisted sintering of a pseudo ternary alloy system BiFeO3-PbTiO3-DyFeO3
,”
Appl. Phys. Lett.
116
,
142902
(
2020
).
67.
S.
Díaz-Castañón
,
J. C.
Faloh-Gandarilla
,
F.
Leccabue
, and
G.
Albanese
, “
The optimum synthesis of high coercivity Pb-M hexaferrite powders using modifications to the traditional ceramic route
,”
J. Magn. Magn. Mater.
272–276
,
2221
2223
(
2004
).
68.
S.
Díaz-Castañón
,
F.
Leccabue
,
B. E.
Watts
, and
G.
Albanese
, “
Magnetic and Mössbauer investigation of Sc- and In-substituted PbFe12O19 hexaferrites
,”
J. Magn. Magn. Mater.
196–197
,
458
460
(
1999
).
69.
T.
Kimura
, “
Magnetoelectric hexaferrites
,”
Annu. Rev. Condens. Matter Phys.
3
,
93
110
(
2012
).
70.
R. P.
Singh
and
S.
Saha
, “
Additives effect on the multiferroic behaviour of BiFeO3-PbTiO3
,”
Ceram. Int.
47
,
29815
29823
(
2021
).
71.
D.
Lebeugle
,
D.
Colson
,
A.
Forget
,
M.
Viret
,
P.
Bonville
,
J. F.
Marucco
, and
S.
Fusil
, “
Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals
,”
Phys. Rev. B
76
,
024116
(
2007
).
You do not currently have access to this content.