The exchange stiffness constant is recognized as one of the fundamental properties of magnetic materials, though its accurate experimental determination remains a particular challenge. In thin films, resonance measurements exploiting perpendicular standing spin waves (PSSWs) are increasingly used to extract this parameter, typically through a determination of the first-order PSSW mode. Here, we present a systematic study of multiple PSSW modes in NiFe films, where both the sample thickness and the cap layer material are varied. The results show that a simple analysis based on the Kittel rigid pinning model yields an exchange stiffness constant that varies with thickness, mode number, and capping layer material. This finding is clearly inconsistent with physical expectation that the exchange stiffness constant of a material is single valued for a particular set of thermodynamic conditions. Using a more general exchange boundary condition, we show, through a comprehensive set of micromagnetic simulations, that a dynamic pinning mechanism originally proposed by Wigen is able to reproduce the experimental results using a single value of Aex. Our findings support the utility of short wavelength, higher order PSSWs to determine the Aex of thin films and show that the value of Aex obtained has a weak dependency on the material immediately adjacent to the magnetic layer.

1.
T.
Thomson
, “
Magnetic properties of metallic thin films
,” in
Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties
(Woodhead Publishing Ltd.,
2013
), pp.
454
546
.
2.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Magnon spintronics
,”
Nat. Phys.
11
(
6
),
453
461
(
2015
).
3.
J.
Walowski
and
M.
Münzenberg
, “
Perspective: Ultrafast magnetism and THz spintronics
,”
J. Appl. Phys.
120
(
14
),
140901
(
2016
).
4.
A.
Barman
and
A.
Haldar
, “
Time-domain study of magnetization dynamics in magnetic thin films and micro- and nanostructures
,”
Solid State Phys.
65
,
1
108
(
2014
).
5.
R. L.
Stamps
 et al, “
The 2014 magnetism roadmap
,”
J. Phys. D: Appl. Phys.
47
(
33
),
333001
(
2014
).
6.
B.
Dieny
 et al, “
Opportunities and challenges for spintronics in the microelectronics industry
,”
Nat. Electron.
3
(
8
),
446
459
(
2020
).
7.
E. E.
Fullerton
and
J. R.
Childress
, “
Spintronics, magnetoresistive heads, and the emergence of the digital world
,”
Proc. IEEE
104
(
10
),
1787
1795
(
2016
).
8.
S.
Parkin
,
X.
Jiang
,
C.
Kaiser
,
A.
Panchula
,
K.
Roche
, and
M.
Samant
, “
Magnetically engineered spintronic sensors and memory
,”
Proc. IEEE
91
(
5
),
661
680
(
2003
).
9.
A.
Hirohata
 et al, “
Review on spintronics: Principles and device applications
,”
J. Magn. Magn. Mater.
509
,
166711
(
2020
).
10.
T.
Chen
 et al, “
Spin-torque and spin-Hall nano-oscillators
,”
Proc. IEEE
104
(
10
),
1919
1945
(
2016
).
11.
V. G.
Harris
, “
Modern microwave ferrites
,”
IEEE Trans. Magn.
48
(
3
),
1075
1104
(
2012
).
12.
P. P.
Freitas
,
R.
Ferreira
, and
S.
Cardoso
, “
Spintronic sensors
,”
Proc. IEEE
104
(
10
),
1894
1918
(
2016
).
13.
D. B.
Gopman
,
J. W.
Lau
,
K. P.
Mohanchandra
,
K.
Wetzlar
, and
G. P.
Carman
, “
Determination of the exchange constant of Tb{0.3}Dy0.7Fe2 by broadband ferromagnetic resonance spectroscopy
,”
Phys. Rev. B
93
(
6
),
064425
(
2016
).
14.
J.
Leliaert
and
J.
Mulkers
, “
Tomorrow’s micromagnetic simulations
,”
J. Appl. Phys.
125
(
18
),
180901
(
2019
).
15.
J. M. D.
Coey
,
Magnetism and Magnetic Materials
(Cambridge University Press,
2010
).
16.
H.
Nosé
, “
Exchange integral in Ni and its alloy film from spin wave resonance
,”
J. Phys. Soc. Jpn.
16
(
12
),
2475
2481
(
1961
).
17.
S.
Klingler
 et al, “
Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques
,”
J. Phys. D: Appl. Phys.
48
(
1
),
015001
(
2015
).
18.
Y.
Yin
 et al, “
Tunable permalloy-based films for magnonic devices
,”
Phys. Rev. B
92
(
2
),
24427
(
2015
).
19.
X.
Liu
,
M. M.
Steiner
,
R.
Sooryakumar
,
G.
Prinz
,
R. F. C.
Farrow
, and
G.
Harp
, “
Exchange stiffness, magnetization, and spin waves in cubic and hexagonal phases of cobalt
,”
Phys. Rev. B
53
(
18
),
12166
12172
(
1996
).
20.
B.
Hillebrands
and
J.
Hamrle
, “
Investigation of spin waves and spin dynamics by optical techniques
,” in
Handbook of Magnetism and Advanced Magnetic Materials
(
Wiley
,
2007
).
21.
S. P.
Vernon
,
S. M.
Lindsay
, and
M. B.
Stearns
, “
Brillouin scattering from thermal magnons in a thin Co film
,”
Phys. Rev. B
29
(
8
),
4439
4442
(
1984
).
22.
G. A.
Riley
,
J. M.
Shaw
,
T. J.
Silva
, and
H. T.
Nembach
, “
Simultaneous measurement of the exchange parameter and saturation magnetization using propagating spin waves
,”
Appl. Phys. Lett.
120
(
11
),
112405
(
2022
).
23.
S. O.
Demokritov
,
B.
Hillebrands
, and
A. N.
Slavin
, “
Brillouin light scattering studies of confined spin waves: Linear and nonlinear confinement
,”
Phys. Rep.
348
(
6
),
441
489
(
2001
).
24.
S. O.
Demokritov
and
V. E.
Demidov
, “
Micro-Brillouin light scattering spectroscopy of magnetic nanostructures
,”
IEEE Trans. Magn.
44
(
1
),
6
12
(
2008
).
25.
J. P.
Bick
 et al, “
Exchange-stiffness constant of a Nd-Fe-B based nanocomposite determined by magnetic neutron scattering
,”
Appl. Phys. Lett.
103
(
12
),
122402
(
2013
).
26.
I. S.
Maksymov
and
M.
Kostylev
, “
Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures
,”
Physica E
69
(
August
),
253
293
(
2015
).
27.
C.
Kittel
, “
Excitation of spin waves in a ferromagnet by a uniform rf field
,”
Phys. Rev.
110
(
5
),
1295
1297
(
1958
).
28.
M. H.
Seavey
and
P. E.
Tannenwald
, “
Direct observation of spin-wave resonance
,”
Phys. Rev. Lett.
1
(
5
),
168
169
(
1958
).
29.
A. G.
Gurevich
and
G. A.
Melkov
,
Magnetisation Oscillations and Waves
(
CRC Press
,
1996
).
30.
W. S.
Ament
and
G. T.
Rado
, “
Electromagnetic effects of spin wave resonance in ferromagnetic metals
,”
Phys. Rev.
97
(
6
),
1558
1566
(
1955
).
31.
G. T.
Rado
and
J. R.
Weertman
, “
Spin-wave resonance in a ferromagnetic metal
,”
J. Phys. Chem. Solids
11
(
3–4
),
315
333
(
1959
).
32.
C. F.
Kooi
,
P. E.
Wigen
,
M. R.
Shanabarger
, and
J. V.
Kerrigan
, “
Spin-wave resonance in magnetic films on the basis of the surface-spin-pinning model and the volume inhomogeneity model
,”
J. Appl. Phys.
35
(
3
),
791
797
(
1964
).
33.
B.
Samantaray
,
A. K.
Singh
,
C.
Banerjee
,
A.
Barman
,
A.
Perumal
, and
P.
Mandal
, “
Perpendicular standing spin wave and magnetic anisotropic study on amorphous FeTaC films
,”
IEEE Trans. Magn.
52
(
7
),
1
4
(
2016
).
34.
J.
BenYoussef
 et al, “
Ferromagnetic resonance in epitaxial FePd thin films with perpendicular anisotropy
,”
J. Magn. Magn. Mater.
202
(
2
),
277
284
(
1999
).
35.
T. D.
Rossing
, “
Spin-wave resonance in thin films at oblique angles
,”
J. Appl. Phys.
34
(
4
),
1133
1135
(
1963
).
36.
C.
Bilzer
 et al, “
Study of the dynamic magnetic properties of soft CoFeB films
,”
J. Appl. Phys.
100
(
5
),
053903
(
2006
).
37.
A.
Conca
 et al, “
Annealing influence on the gilbert damping parameter and the exchange constant of CoFeB thin films
,”
Appl. Phys. Lett.
104
(
18
),
182407
(
2014
).
38.
M.
Belmeguenai
 et al, “
Microstrip line ferromagnetic resonance and Brillouin light scattering investigations of magnetic properties of Co 2 MnGe Heusler thin films
,”
Phys. Rev. B
79
(
2
),
024419
(
2009
).
39.
H.
Puszkarski
, “
Theory of surface-states in spin-wave resonance
,”
Prog. Surf. Sci.
9
(
5–6
),
191
247
(
1979
).
40.
A.
Maksymowicz
, “
Spin-wave spectra of insulating films: Comparison of exact calculations and a single-wave-vector model
,”
Phys. Rev. B
33
(
9
),
6045
6053
(
1986
).
41.
A.
Fert
, “
Origin, development, and future of spintronics (nobel lecture)
,”
Angew. Chem. Int. Ed.
47
(
32
),
5956
5967
(
2008
).
42.
S. A.
Wolf
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
, “
Spintronics—A retrospective and perspective
,”
IBM J. Res. Dev.
50
(
1
),
101
110
(
2006
).
43.
W.
Kwiatkowski
and
S.
Tumanski
, “
The permalloy magnetoresistive sensors-properties and applications
,”
J. Phys. E: Sci. Instrum.
19
(
7
),
502
515
(
1986
).
44.
A. T.
English
and
G. Y.
Chin
, “
Metallurgy and magnetic properties control in permalloy
,”
J. Appl. Phys.
38
(
3
),
1183
1187
(
1967
).
45.
M. R.
Fitzsimmons
,
T. J.
Silva
, and
T. M.
Crawford
, “
Surface oxidation of permalloy thin films
,”
Phys. Rev. B
73
(
1
),
014420
(
2006
).
46.
G.
Nahrwold
,
J. M.
Scholtyssek
,
S.
Motl-Ziegler
,
O.
Albrecht
,
U.
Merkt
, and
G.
Meier
, “
Structural, magnetic, and transport properties of permalloy for spintronic experiments
,”
J. Appl. Phys.
108
(
1
),
013907
(
2010
).
47.
M.
Björck
and
G.
Andersson
, “
Genx: An extensible X-ray reflectivity refinement program utilizing differential evolution
,”
J. Appl. Crystallogr.
40
(
6
),
1174
1178
(
2007
).
48.
C.
Kittel
, “
On the theory of ferromagnetic resonance absorption
,”
Phys. Rev.
73
(
2
),
155
161
(
1948
).
49.
P. E.
Wigen
,
C. F.
Kooi
,
M. R.
Shanabarger
, and
T. D.
Rossing
, “
Dynamic pinning in thin-film spin-wave resonance
,”
Phys. Rev. Lett.
9
(
5
),
206
208
(
1962
).
50.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
(
10
),
107133
(
2014
).
51.
P. E.
Wigen
,
C. F.
Kooi
,
M. R.
Shanabarger
,
U. K.
Cummings
, and
M. E.
Baldwin
, “
Angular dependence of spin pinning in thin ferromagnetic films
,”
J. Appl. Phys.
34
(
4
),
1137
1139
(
1963
).
52.
R. F. L.
Evans
,
W. J.
Fan
,
P.
Chureemart
,
T. A.
Ostler
,
M. O. A.
Ellis
, and
R. W.
Chantrell
, “
Atomistic spin model simulations of magnetic nanomaterials
,”
J. Phys.: Condens. Matter
26
(
10
),
103202
(
2014
).
53.
J.
De Clercq
,
J.
Leliaert
, and
B.
Van Waeyenberge
, “
Modelling compensated antiferromagnetic interfaces with mumax$^3$
,”
J. Phys. D: Appl. Phys.
50
(
42
),
425002
(
2017
).
54.
P.
Talagala
 et al, “
Determination of magnetic exchange stiffness and surface anisotropy constants in epitaxial (formula presented) films
,”
Phys. Rev. B
66
(
14
),
144426
(
2002
).
55.
S.
Hirayama
,
S.
Kasai
, and
S.
Mitani
, “
Interface perpendicular magnetic anisotropy in ultrathin Ta/NiFe/Pt layered structures
,”
Jpn. J. Appl. Phys.
57
(
1
),
013001
(
2018
).
56.
L. G.
Parratt
, “
Surface studies of solids
,”
Phys. Rev.
95
(
2
),
359
369
(
1954
).
57.
L. D.
Landau
and
E. M.
Lifshitz
, “
Theory of the dispersion of magnetic permeability in ferromagnetic bodies
,”
Phys. Z. Sowietunion
8
,
153
(
1935
).
58.
A.
Baker
 et al, “
Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations
,”
J. Magn. Magn. Mater.
421
,
428
439
(
2017
).
You do not currently have access to this content.