Enhancing light–matter interaction into the strong coupling regime attracts tremendous attention in both theory and experiment, which presents essential significance in research from nano-optics to quantum information. In this work, the entanglement effect is observed in the photons emitted from a plasmonic lattice as the coherent light–matter interaction occurs into the strong coupling regime with a Rabi splitting of 93.4 meV. A full quantum mechanical treatment based on the number state representation is established to reveal the underlying physics of the strong coupling phenomenon, especially the femtosecond dynamics of energy exchange and damping. The entangled split states display oscillating concurrence and negative Wigner quasiprobability distribution function, which demonstrates that this designed plasmonic lattice system can serve as an on-demand entangled photon source for quantum information.

1.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plasmon subwavelength optics
,”
Nature
424
,
824
830
(
2003
).
2.
G.
Vecchi
,
V.
Giannini
, and
J.
Gómez Rivas
, “
Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas
,”
Phys. Rev. Lett.
102
,
146807
(
2009
).
3.
A. I.
Väkeväinen
,
R. J.
Moerland
,
H. T.
Rekola
,
A.-P.
Eskelinen
,
J.-P.
Martikainen
,
D.-H.
Kim
, and
P.
Törmä
, “
Plasmonic surface lattice resonances at the strong coupling regime
,”
Nano Lett.
14
,
1721
1727
(
2014
).
4.
P.
Vasa
,
W.
Wang
,
R.
Pomraenke
,
M.
Lammers
,
M.
Maiuri
,
C.
Manzoni
,
G.
Cerullo
, and
C.
Lienau
, “
Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates
,”
Nat. Photonics
7
,
128
132
(
2013
).
5.
W.
Zhang
,
J.-B.
You
,
J.
Liu
,
X.
Xiong
,
Z.
Li
,
C. E.
Png
,
L.
Wu
,
C.-W.
Qiu
, and
Z.-K.
Zhou
, “
Steering room-temperature plexcitonic strong coupling: A diexcitonic perspective
,”
Nano Lett.
21
,
8979
8986
(
2021
).
6.
Q.
Zhao
,
W.-J.
Zhou
,
Y.-H.
Deng
,
Y.-Q.
Zheng
,
Z.-H.
Shi
,
L.
Kee Ang
,
Z.-K.
Zhou
, and
L.
Wu
, “
Plexcitonic strong coupling: Unique features, applications, and challenges
,”
J. Phys. D: Appl. Phys.
55
,
203002
(
2022
).
7.
L.
Lin
,
J.
Xue
,
H.
Xu
,
Q.
Zhao
,
W.
Zhang
,
Y.
Zheng
,
L.
Wu
, and
Z.-K.
Zhou
, “
Integrating lattice and gap plasmonic modes to construct dual-mode metasurfaces for enhancing light–matter interaction
,”
Sci. China Mater.
64
,
3007
3016
(
2021
).
8.
T. W.
Odom
and
G. C.
Schatz
, “
Introduction to plasmonics
,”
Chem. Rev.
111
,
3667
3668
(
2011
).
9.
N. J.
Halas
,
S.
Lal
,
W.-S.
Chang
,
S.
Link
, and
P.
Nordlander
, “
Plasmons in strongly coupled metallic nanostructures
,”
Chem. Rev.
111
,
3913
3961
(
2011
).
10.
V. G.
Kravets
,
F.
Schedin
, and
A. N.
Grigorenko
, “
Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles
,”
Phys. Rev. Lett.
101
,
087403
(
2008
).
11.
V. G.
Kravets
,
A. V.
Kabashin
,
W. L.
Barnes
, and
A. N.
Grigorenko
, “
Plasmonic surface lattice resonances: A review of properties and applications
,”
Chem. Rev.
118
,
5912
5951
(
2018
).
12.
W.
Zhou
and
T. W.
Odom
, “
Tunable subradiant lattice plasmons by out-of-plane dipolar interactions
,”
Nat. Nanotechnol.
6
,
423
427
(
2011
).
13.
D. G.
Baranov
,
M.
Wersäll
,
J.
Cuadra
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Novel nanostructures and materials for strong light–matter interactions
,”
ACS Photonics
5
,
24
42
(
2018
).
14.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2015
).
15.
P.
Vasa
and
C.
Lienau
, “
Strong light–matter interaction in quantum emitter/metal hybrid nanostructures
,”
ACS Photonics
5
,
2
23
(
2018
).
16.
W.
Liu
,
B.
Lee
,
C. H.
Naylor
,
H.-S.
Ee
,
J.
Park
,
A. T. C.
Johnson
, and
R.
Agarwal
, “
Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice
,”
Nano Lett.
16
,
1262
1269
(
2016
).
17.
R. K.
Yadav
,
M. R.
Bourgeois
,
C.
Cherqui
,
X. G.
Juarez
,
W.
Wang
,
T. W.
Odom
,
G. C.
Schatz
, and
J. K.
Basu
, “
Room temperature weak-to-strong coupling and the emergence of collective emission from quantum dots coupled to plasmonic arrays
,”
ACS Nano
14
,
7347
7357
(
2020
).
18.
R. K.
Yadav
,
M.
Otten
,
W.
Wang
,
C. L.
Cortes
,
D. J.
Gosztola
,
G. P.
Wiederrecht
,
S. K.
Gray
,
T. W.
Odom
, and
J. K.
Basu
, “
Strongly coupled exciton–surface lattice resonances engineer long-range energy propagation
,”
Nano Lett.
20
,
5043
5049
(
2020
).
19.
J.-E.
Park
,
R.
López-Arteaga
,
A. D.
Sample
,
C. R.
Cherqui
,
I.
Spanopoulos
,
J.
Guan
,
M. G.
Kanatzidis
,
G. C.
Schatz
,
E. A.
Weiss
, and
T. W.
Odom
, “
Polariton dynamics in two-dimensional Ruddlesden–Popper perovskites strongly coupled with plasmonic lattices
,”
ACS Nano
16
,
3917
3925
(
2022
).
20.
M. S.
Tame
,
K. R.
McEnery
,
Ş. K.
Özdemir
,
J.
Lee
,
S. A.
Maier
, and
M. S.
Kim
, “
Quantum plasmonics
,”
Nat. Phys.
9
,
329
340
(
2013
).
21.
H.
Saito
,
D.
Yoshimoto
,
H.
Lourenco-Martins
,
N.
Yamamoto
, and
T.
Sannomiya
, “
Hybridization of gap modes and lattice modes in a plasmonic resonator array with a metal-insulator-metal structure
,”
ACS Photonics
6
,
2618
2625
(
2019
).
22.
W.
Zhou
,
J. Y.
Suh
,
Y.
Hua
, and
T. W.
Odom
, “
Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays
,”
J. Phys. Chem. C
117
,
2541
2546
(
2013
).
23.
J.
Yang
,
Q.
Sun
,
K.
Ueno
,
X.
Shi
,
T.
Oshikiri
,
H.
Misawa
, and
Q.
Gong
, “
Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes
,”
Nat. Commun.
9
,
4858
(
2018
).
24.
Z.-K.
Zhou
,
J.
Liu
,
Y.
Bao
,
L.
Wu
,
C. E.
Png
,
X.-H.
Wang
, and
C.-W.
Qiu
, “
Quantum plasmonics get applied
,”
Prog. Quantum Electron.
65
,
1
20
(
2019
).
25.
Y.
Suganami
,
T.
Oshikiri
,
X.
Shi
, and
H.
Misawa
, “
Water oxidation under modal ultrastrong coupling conditions using gold/silver alloy nanoparticles and Fabry-Perot nanocavities
,”
Angew. Chem. Int. Ed. Engl.
60
,
18438
18442
(
2021
).
26.
J.
Ren
,
Y.
Gu
,
D.
Zhao
,
F.
Zhang
,
T.
Zhang
, and
Q.
Gong
, “
Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection
,”
Phys. Rev. Lett.
118
,
073604
(
2017
).
27.
J.
Ren
,
H.
Hao
,
Z.
Qian
,
X.
Duan
,
F.
Zhang
,
T.
Zhang
,
Q.
Gong
, and
Y.
Gu
, “
High-dielectric constant enhanced photons’ exciton coupling in an evanescent vacuum
,”
J. Opt. Soc. Am. B
35
,
1475
1481
(
2018
).
28.
M. D.
Eisaman
,
J.
Fan
,
A.
Migdall
, and
S. V.
Polyakov
, “
Invited Review Article: Single-photon sources and detectors
,”
Rev. Sci. Instrum.
82
,
071101
(
2011
).
29.
A.
Vázquez-Guardado
,
A.
Safaei
,
S.
Modak
,
D.
Franklin
, and
D.
Chanda
, “
Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances
,”
Phys. Rev. Lett.
113
,
263902
(
2014
).
30.
Y.
Li
,
Q.
Sun
,
S.
Zu
,
X.
Shi
,
Y.
Liu
,
X.
Hu
,
K.
Ueno
,
Q.
Gong
, and
H.
Misawa
, “
Correlation between near-field enhancement and dephasing time in plasmonic dimers
,”
Phys. Rev. Lett.
124
,
163901
(
2020
).
31.
Z.
Liang
,
L.
Qing
,
Z.
Li
,
X. T.
Nguyen
,
T.
Xu
,
A.
De Sio
,
H.
Zhang
,
C.
Lienau
, and
W.
Wang
, “
Plasmon-plasmon interactions supported by a one-dimensional plasmonic crystal: Rabi phase and generalized Rabi frequency
,”
Phys. Rev. B
102
,
035422
(
2020
).
32.
Y.
Todorov
,
A. M.
Andrews
,
R.
Colombelli
,
S.
De Liberato
,
C.
Ciuti
,
P.
Klang
,
G.
Strasser
, and
C.
Sirtori
, “
Ultrastrong light-matter coupling regime with polariton dots
,”
Phys. Rev. Lett.
105
,
196402
(
2010
).
33.
D. G.
Baranov
,
B.
Munkhbat
,
E.
Zhukova
,
A.
Bisht
,
A.
Canales
,
B.
Rousseaux
,
G.
Johansson
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions
,”
Nat. Commun.
11
,
2715
(
2020
).
34.
P.
Peng
,
Y.-C.
Liu
,
D.
Xu
,
Q.-T.
Cao
,
G.
Lu
,
Q.
Gong
, and
Y.-F.
Xiao
, “
Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances
,”
Phys. Rev. Lett.
119
,
233901
(
2017
).
35.
R. W.
Wood
, XLII
, “
On a remarkable case of uneven distribution of light in a diffraction grating spectrum
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
4
,
396
402
(
1902
).
36.
M. M. J.
Treacy
, “
Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings
,”
Phys. Rev. B
66
,
195105
(
2002
).
37.
C.
Cherqui
,
M. R.
Bourgeois
,
D.
Wang
, and
G. C.
Schatz
, “
Plasmonic surface lattice resonances: Theory and computation
,”
Acc. Chem. Res.
52
,
2548
2558
(
2019
).
38.
W.
Wang
,
M.
Ramezani
,
A. I.
Väkeväinen
,
P.
Törmä
,
J. G.
Rivas
, and
T. W.
Odom
, “
The rich photonic world of plasmonic nanoparticle arrays
,”
Mater. Today
21
,
303
314
(
2018
).
39.
R.
Guo
,
T. K.
Hakala
, and
P.
Törmä
, “
Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays
,”
Phys. Rev. B
95
,
155423
(
2017
).
40.
B.
Auguié
and
W. L.
Barnes
, “
Collective resonances in gold nanoparticle arrays
,”
Phys. Rev. Lett.
101
,
143902
(
2008
).
41.
M. F.
Limonov
,
M. V.
Rybin
,
A. N.
Poddubny
, and
Y. S.
Kivshar
, “
Fano resonances in photonics
,”
Nat. Photonics
11
,
543
554
(
2017
).
42.
Y.
Francescato
,
V.
Giannini
, and
S. A.
Maier
, “
Plasmonic systems unveiled by fano resonances
,”
ACS Nano
6
,
1830
1838
(
2012
).
43.
K. J.
Vahala
, “
Optical microcavities
,”
Nature
424
,
839
846
(
2003
).
44.
J. P.
Reithmaier
,
G.
Sęk
,
A.
Löffler
,
C.
Hofmann
,
S.
Kuhn
,
S.
Reitzenstein
,
L. V.
Keldysh
,
V. D.
Kulakovskii
,
T. L.
Reinecke
, and
A.
Forchel
, “
Strong coupling in a single quantum dot–semiconductor microcavity system
,”
Nature
432
,
197
200
(
2004
).
45.
T.
Yoshie
,
A.
Scherer
,
J.
Hendrickson
,
G.
Khitrova
,
H. M.
Gibbs
,
G.
Rupper
,
C.
Ell
,
O. B.
Shchekin
, and
D. G.
Deppe
, “
Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity
,”
Nature
432
,
200
203
(
2004
).
46.
Y.
Takakura
, “
Optical resonance in a narrow slit in a thick metallic screen
,”
Phys. Rev. Lett.
86
,
5601
5603
(
2001
).
47.
H.
Shin
,
P. B.
Catrysse
, and
S.
Fan
, “
Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes
,”
Phys. Rev. B
72
,
085436
(
2005
).
48.
B. J.
Lee
,
L. P.
Wang
, and
Z. M.
Zhang
, “
Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film
,”
Opt. Express
16
,
11328
11336
(
2008
).
49.
J.
Chen
,
P.
Wang
,
Z. M.
Zhang
,
Y.
Lu
, and
H.
Ming
, “
Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure
,”
Phys. Rev. E
84
,
026603
(
2011
).
50.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP: An open-source Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
,
1760
1772
(
2012
).
51.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP 2: A Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
184
,
1234
1240
(
2013
).
52.
M. O.
Scully
and
M. S.
Zubairy
,
Quantum Optics
(
Cambridge University Press
,
Cambridge
,
1997
).
53.
G. W.
Ford
and
R. F.
O'Connell
, “
The rotating wave approximation (RWA) of quantum optics: Serious defect
,”
Phys. A: Stat. Mech. Appl.
243
,
377
381
(
1997
).
54.
C.
Fleming
,
N. I.
Cummings
,
C.
Anastopoulos
, and
B. L.
Hu
, “
The rotating-wave approximation: Consistency and applicability from an open quantum system analysis
,”
J. Phys. A: Math. Theor.
43
,
405304
(
2010
).
55.
C.
Gardiner
and
P.
Zoller
,
Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics
(
Springer, Berlin
,
2010
).
56.
W. K.
Wootters
, “
Entanglement of formation of an arbitrary state of two qubits
,”
Phys. Rev. Lett.
80
,
2245
2248
(
1998
).
57.
M.
Hensen
,
T.
Heilpern
,
S. K.
Gray
, and
W.
Pfeiffer
, “
Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity
,”
ACS Photonics
5
,
240
248
(
2018
).
58.
A.
Gonzalez-Tudela
,
D.
Martin-Cano
,
E.
Moreno
,
L.
Martin-Moreno
,
C.
Tejedor
, and
F. J.
Garcia-Vidal
, “
Entanglement of two qubits mediated by one-dimensional plasmonic waveguides
,”
Phys. Rev. Lett.
106
,
020501
(
2011
).
59.
U.
Leonhardt
and
H.
Paul
, “
Measuring the quantum state of light
,”
Progr. Quantum Electron.
19
,
89
130
(
1995
).
60.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
759
(
1932
).
61.
H.-W.
Lee
, “
Theory and application of the quantum phase-space distribution functions
,”
Phys. Rep.
259
,
147
211
(
1995
).
You do not currently have access to this content.