Heterojunction GaN/MoSe2 has recently piqued the interest of researchers due to its exceptional electronic and optical properties. Despite this, the higher rate of photogenerated carrier recombination limits their technical application. Implementing a promising approach to the formation of the 2D heterostructure with vacancies may improve photocatalytic activity. By first-principles, the stability, electronic structure, and optical properties of monolayer GaN and MoSe2, GaN/MoSe2 (GN/MS), GaN/MoSe2 with a Ga vacancy (VGa-GN/MS), GaN/MoSe2 with an N vacancy (VN-GN/MS), and GaN/MoSe2 with vacancies of Ga and N (VGa@N-GN/MS) are systematically computed. Compared with monolayer GaN, MoSe2, and GaN/MoSe2, the results show that vacancies do not destroy the stability of heterojunctions and cause a decrease in their bandgaps and a redshift of the absorption spectra. Type-II band alignment is observed through Perdew–Burke–Ernzerhof calculations in all heterostructures. VGa-GN/MS and VGa@N-GN/MS are p-type semiconductors, while VN-GN/MS is an n-type semiconductor. Based on the analysis of Mulliken occupancy, work function, and optical properties, we speculate that vacancies of Ga and N cause GN/MS to be energetically favorable for water splitting.

1.
L. L.
Sun
,
C. Y.
Liu
,
J.
Li
,
Y.
Zhou
,
H.
Wang
,
P. W.
Huo
,
C. C.
Ma
, and
Y. S.
Yan
, “
Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets
,”
J. Catal.
40
,
80
94
(
2019
).
2.
X.
Guo
,
C. W.
Yun
,
B. Z.
Li
,
Z.
Ping
, and
Q.
Li
, “
Photocatalytic mechanism of magnetic TiO2 and its application in sewage treatment
,”
Appl. Chem. Ind.
47
,
1518
1522
(
2018
).
3.
D. Q.
Liu
,
Z. Y.
Jiang
,
Y. M.
Lin
,
J. M.
Zheng
, and
Y. M.
Lin
, “
S-Scheme photocatalytic mechanism of type-I band alignment in α-In2Se3/g-C3N4 heterostructure
,”
Phys. Status Solidi RRL
15
,
1862
6254
(
2021
).
4.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
38
(
1972
).
5.
H.
Zhang
,
J.
Cai
,
Y.
Wang
,
Q.
Mo
, and
M. T.
Meng
, “
Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets
,”
Appl. Catal. B.: Environ.
220
,
126
136
(
2018
).
6.
N.
Wen
,
J.
Bang
,
F. F.
Wang
,
P.
Zheng
,
T.
Shen
, and
L.
Ya
, “
The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film
,”
Appl. Surf. Sci.
410
,
513
518
(
2017
).
7.
B.
Noureddine
,
E.
Abdelkader
,
B.
Naceur
, and
N. A.
Laouedj
, “
SNO2 foam grain-shaped nanoparticles: Synthesis, characterization and UVA light induced photocatalysis
,”
J. Alloys Compd.
679
,
408
419
(
2016
).
8.
P.
Dash
,
A.
Manna
,
N. C.
Mishra
, and
S.
Varma
, “
Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis
,”
Physica E
107
,
38
46
(
2019
).
9.
S. Y.
Liu
,
J. C.
Zhu
,
W. Y.
Yan
, and
L.
Xiao
, “
Oxygen vacancy-enhanced visible light-driven photocatalytic activity of TiO2 sphere-W18O49 nanowire bundle heterojunction
,”
Appl. Catal., A
500
,
30
39
(
2015
).
10.
Y. L.
Xi
,
J. C.
Zhuang
,
W. C.
Hao
, and
Y.
Du
, “
Recent progress on two-dimensional heterostructure based photodetectors
,”
J. Synth. Cryst.
49
,
379
397
(
2020
).
11.
F.
Khan
,
M.
Idrees
,
C.
Nguyen
, and
A. B.
Ahmada
, “
A first-principles study of electronic structure and photocatalytic performance of GaN-MX2 (M = Mo, W; X = S, Se) van der Waals heterostructures
,”
RSC Adv.
10
,
24683
24690
(
2020
).
12.
L.
Yang
,
Y.
Wang
, and
H.
Xu
, “
Color-tunable ZnO/GaN heterojunction LEDs achieved by coupling with Ag nanowire surface plasmons
,”
ACS Appl. Mater. Interfaces
10
,
15812
15819
(
2018
).
13.
Z. F.
Zhang
,
Y. Z.
Guo
, and
J.
Robertson
, “
Atomic structure and band alignment at Al2O3/GaN, Sc2O3/GaN and La2O3/GaN interfaces: a first-principles study
,”
Microelectron. Eng.
216
,
1110396
(
2019
).
14.
L. L.
Zhang
,
J. N.
Sha
,
G. H.
Sun
,
R. R.
Chen
,
Q.
Liu
,
J. Y.
Liu
,
J.
Yu
,
H. S.
Zhang
, and
J.
Wang
, “
Vacancy engineering and constructing built-in electric field in z-scheme full-spectrum-response 0D/3D BiOI/MoSe2 heterojunction modified PVDF membrane for PPCPs degradation and anti-biofouling
,”
Chem. Eng. J.
414
,
128867
(
2021
).
15.
C.
Kaewmeechai
,
Y.
Laosiritaworn
, and
A. P.
Jaroenjittichai
, “
Hybrid functional investigation of band offsets for non-polar, Ga-polar and Al-polar interfaces in GaN/AlN heterojunction
,”
J. Phys.: Condens. Matter
33
,
035005
(
2020
).
16.
J. P.
Chirag
,
A.
Rajesh
, and
A.
Sangeeta
, “
Solution-processed uniform MoSe2-WSe2 heterojunction thin film on silicon substrate for superior and tunable photodetection
,”
Nanotechnol. Weekly
8
,
4809
4817
(
2020
).
17.
Y. L.
Chen
,
M. L.
Li
,
Y. M.
Wu
,
S. J.
Li
,
Y.
Lin
,
D. X.
Du
,
H. Y.
Ding
,
N.
Pan
, and
X. P.
Wang
, “
Two step chemical vapor deposition of In2Se3/MoSe2 van der Waals heterostructures
,”
Chin. J. Chem. Phys.
30
,
325
(
2017
).
18.
H. L.
Tu
,
H. B.
Zhao
,
F.
Wei
,
Q. Z.
Zhang
, and
J.
Du
, “
Research progress in two-dimensional atomic crystal materials and van der Waals heterostructures
,”
Chin. J. Rare Met.
41
,
449
465
(
2017
).
19.
H. F.
Cheng
,
B. B.
Huang
,
J. B.
Lu
,
Z. Y.
Wang
,
B.
Xu
,
X. Y.
Qin
,
X. Y.
Zhang
, and
Y.
Dai
, “
Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs
,”
Prop. Appl. Mater.
65
,
467
476
(
2010
).
20.
A.
Uedono
,
T.
Nabatame
,
W.
Egger
,
T.
Koschine
,
C.
Hugenschmidt
,
M.
Dickmann
,
M.
Sumiya
, and
S.
Ishibashi
, “
Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams
,”
J. Appl. Phys.
123
,
155302
(
2018
).
21.
C.
Li
and
Q. Y.
Hou
, “
The effects of point defects on the electronic and magnetic properties of GaN/ZnO heterojunction polar interface
,”
Comput. Mater. Sci.
157
,
136
141
(
2019
).
22.
Y. J.
Ji
,
Y. J.
Du
, and
M. S.
Wang
, “
Influence of vacancy defect on surface feature and adsorption of Cs on GaN (0001) surface
,”
Sci. World J.
2014
,
490853
.
23.
H. W.
Peng
and
J. P.
Perdew
, “
Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials
,”
Phys. Rev. B
95
,
081105
(
2017
).
24.
S. T.
Holmes
,
C. S.
Vojvodin
, and
R. W.
Schurko
, “
Dispersion-corrected DFT methods for applications in nuclear magnetic resonance crystallography
,”
J. Phys. Chem. A
124
,
10312
10323
(
2020
).
25.
T.
Bučko
,
S.
Lebègue
,
J.
Hafner
, and
J. G.
Ángyán
, “
Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids
,”
Phys. Rev. B
87
,
064110
(
2013
).
26.
M.
Zahedifar
and
P.
Kratzer
, “
Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory
,”
Phys. Rev. B
97
,
035204
(
2018
).
27.
Z. F.
Zhang
,
Y. Z.
Guo
, and
J.
Robertson
, “
Chemical bonding and band alignment at X2O3/GaN (X = Al, Sc) interfaces
,”
Appl. Phys. Lett.
114
,
161061
(
2019
).
28.
A. K. M.
Pinto
,
N. F.
Frazão
,
D. L.
Azevedo
, and
F.
Moraes
, “
Evidence for flat zero-energy bans in bilayer graphene with a periodic defect lattice
,”
Physica E
119
,
113987
(
2020
).
29.
L. J.
Guo
,
L. S.
Hu
,
X. G.
Ma
, and
J.
Xiang
, “
Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure
,”
Acta Phys. Sin.
68
,
215
223
(
2019
).
30.
A. S.
Chouhan
,
N. P.
Jasti
, and
S.
Avasthi
, “
Effect of interface defect density on performance of perovskite solar cell: Correlation of simulation and experiment
,”
Mater. Lett.
221
,
150
153
(
2018
).
31.
F. N.
Wang
,
J. C.
Li
, and
M.
Li
, “
Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
,”
Chin. Phys. B
26
,
037101
(
2017
).
32.
Y. Z.
Wang
,
T.
Liu
,
W. Z.
Tian
,
Y.
Zhang
,
P. Y.
Shan
,
Y. J.
Chen
,
W. H.
Wei
,
H. K.
Yuan
, and
H.
Cui
, “
Mechanism for hydrogen evolution from water splitting based on a MoS2/WSe2 heterojunction photocatalyst: A first-principle study
,”
RSC Adv.
10
,
41127
(
2020
).
33.
H.
Niu
,
X. H.
Wan
,
X. T.
Wang
,
C.
Shao
,
J.
Robertson
,
Z. F.
Zhang
, and
Y. Z.
Guo
, “
Single-atom rhodium on defective g-C3N4: A promising bifunctional oxygen electrocatalyst
,”
ACS Sustainable Chem. Eng.
9
,
3590
3599
(
2021
).
34.
X. H.
Wan
,
Z. F.
Zhang
,
H.
Niu
,
Y. H.
Yin
,
C. G.
Kuai
,
J.
Wang
,
C.
Shao
, and
Y. Z.
Guo
, “
Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-metal-site catalysts for CO2 reduction
,”
J. Phys. Chem. Lett.
12
,
6111
6118
(
2021
).
35.
Q. L.
Lin
,
H.
Liang
,
C. Q.
Zhou
,
Z. F.
Qian
,
Y. L.
Sun
,
X. Y.
Wang
, and
R. H.
Wang
, “
Defect-induced magnetism in χ3 borophene
,”
Rare Met.
41
,
3486
3494
(
2022
).
36.
F. Y.
Wang
,
T. T.
Song
,
B.
Kong
,
M.
Zhang
,
H.
Yang
,
X. Y.
An
,
T. H.
Chen
, and
T. X.
Zeng
, “
Effect of Al, Si doping concentration on electrical conductivity and absorption spectrum of wurtzite CdSe
,”
Adv. Laser Optoelectron.
55
,
387
394
(
2018
).
37.
M. V.
Putz
and
N.
Russo
, “
About the Mulliken electronegativity in DFT
,”
Theor. Chem. Acc.
114
,
38
45
(
2015
).
38.
L.
Ping
,
Z. Z.
Qin
,
Y. L.
Yue
, and
Z.
Xu
, “
Structural, electronic, and magnetic properties of vanadium atom-adsorbed MoSe2 monolayer
,”
Chinese Phys. B
26
,
392
–398 (
2017
).
39.
P.
Liu
,
Z. Z.
Qin
,
Y. L.
Yue
, and
X.
Zuo
, “
Structural, electronic, and magnetic properties of vanadium atom-adsorbed MoSe2 monolayer
,”
Chin. Phys. B
26
,
027103
(
2017
).
40.
H. J.
Yang
,
Y.
Wang
,
X. L.
Zou
,
R. X.
Bai
,
Z. C.
Wu
,
S.
Han
,
T.
Chen
,
S.
Hu
,
H.
Zhu
,
L.
Chen
,
D. W.
Zhang
,
J. C.
Lee
,
X. G.
Lu
,
P.
Zhou
,
Q. Q.
Sun
,
E. T.
Yu
,
D.
Akinwande
, and
L.
Ji
, “
Wafer-scale synthesis of WS2 films with in situ controllable p-type doping by atomic layer deposition
,”
Research
1
,
327
335
(
2022
).
41.
S.
Kumagal
,
H.
Ishii
,
G.
Watanabe
,
C. P.
Yu
,
S.
Watanabe
,
J.
Takeya
, and
T.
Okamoto
, “
Nitrogen-containing perylene diimides: Molecular design, robust aggregated structures, and advances in n-type organic semiconductors
,”
Acc. Chem. Res.
55
,
660
672
(
2022
).
42.
Y. C.
Yin
,
X. W.
Zhang
,
L.
Li
,
L.
Spiccia
, and
C. S.
Orcid
, “
Experimental and computational investigation of the optical, electronic, and electrochemical properties of hydrogenated α-Fe2O3
,”
J. Phys. Chem. C
121
,
16059
16065
(
2017
).
43.
S.
Canossa
,
E.
Ferrari
,
P.
Sippel
,
J. K. H.
Fischer
,
R.
Pfattner
,
R.
Frison
,
M.
Masino
, and
M. P.
Mas-Torrent
, “
Tetramethylbenzidine-tetrafluoroTCNQ (TMB-TCNQF4) a narrow-gap semiconducting salt with room-temperature relaxor ferroelectric behavior
,”
J. Phys. Chem. C
125
,
25816
25824
(
2021
).
44.
Y. Q.
Jiao
,
S. N.
Zhang
,
Z. Q.
Yang
, and
G. W.
Lu
, “
Indirect-to-direct band gap transition and optical properties of metal alloying of Cs2AgMxBr6 (M = Bi, In, Sb): Insights from the first principles
,”
Comput. Theor. Chem.
1148
,
55
59
(
2019
).
45.
J. M.
Luo
,
G. H.
Dong
,
Y. Q.
Zhu
,
Z.
Yang
, and
C. Y.
Wang
, “
Switching of semiconducting behavior from n-type to p-type induced high photocatalytic No removal activity in g-C3N4
,”
Appl. Catal., B
214
,
46
56
(
2017
).
46.
B. Z.
Wu
,
J. R.
Yin
,
Y. H.
Ding
, and
P.
Zhang
, “
A new two-dimensional TeSe2 semiconductor: Indirect to direct band-gap transitions
,”
Sci. China Mater.
60
,
747
754
(
2017
).
47.
Y.
Nakano
, “
Deep-level defects in homoepitaxial p-type GaN
,”
J. Vac. Sci. Technol. A
36
,
023001
(
2018
).
48.
P. A.
Alekseev
,
B. R.
Borodin
,
F. A.
Benimetskiy
, A. N. Smirnov, V. Yu. Davydov, S. P. Lebedev, A. A. Lebedev, and M. S. Dunaevskiy, “
Optical and electrical properties of the MoSe2/graphene heterostructures
,”
J. Phys.: Conf. Ser
,
1092
,
012002
(
2018
).
49.
P. A.
Alekseev
,
B. R.
Borodin
,
F. A.
Benimetskiy
,
A. N.
Smirnov
,
V. Y.
Davydov
,
S. P.
Lebedev
,
A. A.
Lebedev
, and
M. S.
Dunaevskiy
, “
Optical and electrical properties of the MoSe2/graphene heterostructures
,”
J. Phys. Conf. Ser.
1092
,
012002
(
2018
).
50.
Y. J.
Pang
,
Q.
Feng
,
Z. K.
Kou
,
G. Q.
Xu
,
F.
Gao
,
B.
Wang
,
Z. H.
Pan
,
J.
Lv
,
Y.
Zhang
, and
Y. C.
Wu
, “
A surface precleaning strategy intensifies the interface coupling of the Bi2O3/TiO2 heterostructure for enhanced photoelectrochemical detection properties
,”
Mater. Chem. Front.
4
,
638
644
(
2020
).
51.
Z. F.
Zhang
,
Y. Z.
Guo
, and
J.
Robertson
, “
Chemical bonding and band alignment at X2O3/GaN (X = Al, Sc) interfaces
,”
Appl. Phys. Lett.
114
,
161601
(
2019
).
52.
H. L.
Zhuang
and
R. G.
Hennig
, “
Theoretical perspective of photocatalytic properties of single-layer SnS2
,”
Phys. Rev. B
88
,
115314
(
2013
).
53.
X. F.
Jia
,
J. L.
Wang
,
Y.
Lu
,
J. M.
Sun
,
Y.
Li
,
Y. Y.
Wang
, and
J. Y.
Zhang
, “
Designing SnS/MoS2 van der Waals heterojunction for direct z-scheme photocatalytic overall water-splitting by DFT investigation
,”
Phys. Chem. Chem. Phys.
24
,
21321
21330
(
2022
).
54.
N.
Shehzad
,
I.
Shahid
,
S.
Yao
,
S.
Ahmad
,
A.
Ali
,
L. X.
Zhang
, and
Z.
Zhou
, “
A first-principles study of electronic structure and photocatalytic performance of two-dimensional van der Waals MTe2-As (M = Mo, W) heterostructures
,”
Int. J. Hydrogen Energy
45
,
27089
27097
(
2020
).
55.
Z. F.
Zhang
,
B. Q.
Huang
,
Q. K.
Qian
,
Z. B.
Gao
,
X.
Tang
, and
B. K.
Li
, “
Strain-tunable III-nitride/ZnO heterostructures for photocatalytic water-splitting: A hybrid functional calculation
,”
APL Mater.
8
,
041114
(
2020
).
56.
K.
Kanehara
,
S.
Urata
,
S.
Yasuhara
,
T.
Tsurumi
, and
T.
Hoshina
, “
Dielectric property and polarization mechanism of sodium silicate glass in GHz-THz range
,”
Jpn. J. Appl. Phys.
61
,
SN1001
(
2022
).
57.
A.
Sharma
and
T. D.
Das
, “
Theoretical investigation of interband absorption coefficient and physical properties of GaAsNBi alloy with lattice-matched to GaAs
,”
Mater. Today: Proc.
47
,
612
615
(
2021
).
58.
Z. F.
Zhang
,
R. Y.
Cao
,
C. H.
Wang
,
H. B.
Li
,
H.
Dong
,
W. H.
Wang
,
F.
Lu
,
Y. H.
Cheng
,
X. J.
Xie
,
H.
Liu
,
K.
Cho
,
R. M.
Wallace
, and
W. C.
Wang
, “
GaN as an interfacial passivation layer: Tuning band offset and removing Fermi level pinning for III-V MOS devices
,”
ACS Appl. Mater. Interfaces
7
,
5141
5149
(
2015
).
59.
J. B.
Ma
,
X. H.
Cui
, and
N.
Jiang
, “
Modelling the precipitation nowcasting ZR relationship based on deep learning
,”
Adv. Artif. Intelligence Security
7
,
214
224
(
2022
).
60.
J. J.
Fu
,
D. X.
Kou
,
W. H.
Zhou
,
Z. J.
Zhou
,
S. J.
Yuan
,
Y. F.
Qi
, and
S. X.
Wu
, “
Ag, Ge dual-gradient substitution for low-energy loss and high-efficiency kesterite solar cells
,”
J. Mater. Chem. A
8
,
22292
22301
(
2020
).

Supplementary Material

You do not currently have access to this content.