Cross-sectional transmission electron microscopy studies often reveal a-type dislocations located either below or above the interfaces in InGaN/GaN structures deposited along the [0001] direction. We show that these dislocations do not emerge during growth but rather are a consequence of the stress state on lateral surfaces and mechanical processing, making them a post-growth effect. In cathodoluminescence mapping, these defects are visible in the vicinity of the edges of InGaN/GaN structures exposed by cleaving or polishing. Finite element calculations show the residual stress distribution in the vicinity of the InGaN/GaN interface at the free edge. The stress distribution is discussed in terms of dislocation formation and propagation. The presence of such defects at free edges of processed devices based on InGaN layers may have a significant negative impact on the device performance.

1.
A. I.
Duff
,
L.
Lymperakis
, and
J.
Neugebauer
, “
Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: An ab initio approach
,”
Phys. Rev. B
89
, 085307 (
2014
).
2.
T.
Schulz
,
L.
Lymperakis
,
M.
Anikeeva
,
M.
Siekacz
,
P.
Wolny
,
T.
Markurt
, and
M.
Albrecht
, “
Influence of strain on the indium incorporation in (0001) GaN
,”
Phys. Rev. Mater.
4
, 073404 (
2020
).
3.
P.
Chan
,
S. P.
Denbaars
, and
S.
Nakamura
, “
Growth of highly relaxed InGaN pseudo-substrates over full 2-in.: Wafers
,”
App. Phys. Lett.
119
,
131106
(
2021
).
4.
C.
Wurm
,
H.
Collins
,
N.
Hatui
,
W.
Li
,
S.
Pasayat
,
R.
Hamwey
,
K.
Sun
,
I.
Sayed
,
K.
Khan
,
E.
Ahmadi
,
S.
Keller
, and
U.
Mishra
, “
Demonstration of device-quality 60% relaxed In0.2Ga0.8 N on porous GaN pseudo-substrates grown by PAMBE
,”
J. Appl. Phys.
131
,
015701
(
2022
).
5.
X.
Zhao
,
B.
Tang
,
L.
Gong
,
J.
Bai
,
J.
Ping
, and
S.
Zhou
, “
Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes
,”
Appl. Phys. Lett.
118
,
182102
(
2021
).
6.
S.
Srinivasan
,
L.
Geng
,
R.
Liu
,
F. A.
Ponce
,
Y.
Narukawa
, and
S.
Tanaka
, “
Slip systems and misfit dislocations in InGaN epilayers
,”
Appl. Phys. Lett.
83
,
5187
5189
(
2003
).
7.
M.
Iwaya
,
T.
Yamamoto
,
D.
Iida
,
Y.
Kondo
,
M.
Sowa
,
H.
Matsubara
,
K.
Ishihara
,
T.
Takeuchi
,
S.
Kamiyama
, and
I.
Akasaki
, “
Relationship between misfit-dislocation formation and initial threading-dislocation density in GaInN/GaN heterostructures
,”
Jpn. J. Appl. Phys.
54
,
115501
(
2015
).
8.
J.
Moneta
,
M.
Siekacz
,
E.
Grzanka
,
T.
Schulz
,
T.
Markurt
,
M.
Albrecht
, and
J.
Smalc-Koziorowska
, “
Peculiarities of plastic relaxation of (0001) InGaN epilayers and their consequences for pseudo-substrate application
,”
Appl. Phys. Lett.
113
,
031904
(
2018
).
9.
J. A.
Floro
,
D. M.
Follstaedt
,
P.
Provencio
,
S. J.
Hearne
, and
S. R.
Lee
, “
Misfit dislocation formation in the AIGaN/GaN heterointerface
,”
J. Appl. Phys.
96
,
7087
7094
(
2004
).
10.
J.
Mei
,
R.
Liu
,
F. A.
Ponce
,
H.
Omiya
, and
T.
Mukai
, “
Basal-plane slip in InGaN/GaN heterostructures in the presence of threading dislocations
,”
Appl. Phys. Lett.
90
,
171922
(
2007
).
11.
T.
Markurt
,
T.
Schulz
,
P.
Drechsel
,
P.
Stauss
, and
M.
Albrecht
, “
A predictive model for plastic relaxation in (0001)-oriented wurtzite thin films and heterostructures
,”
J. Appl. Phys.
124
,
035303
(
2018
).
12.
Q. T.
Li
,
A.
Minj
,
M. P.
Chauvat
,
J.
Chen
, and
P.
Ruterana
, “
Interface dislocations in InxGa1–xN/GaN heterostructures
,”
Phys. Status Solidi A
214
,
1600442
(
2017
).
13.
S. L.
Rhode
,
W. Y.
Fu
,
M. A.
Moram
,
F. C.-P.
Massabuau
,
M. J.
Kappers
,
C.
McAleese
,
F.
Oehler
,
C. J.
Humphreys
,
R. O.
Dusane
, and
S. L.
Sahonta
, “
Structure and strain relaxation effects of defects in InxGa1−xN epilayers
,”
J. Appl. Phys.
116
,
103513
(
2014
).
14.
E.
Papadomanolaki
,
C.
Bazioti
,
S. A.
Kazazis
,
M.
Androulidaki
,
G. P.
Dimitrakopulos
, and
E.
Iliopoulos
, “
Molecular beam epitaxy of thick InGaN(0001) films: Effects of substrate temperature on structural and electronic properties
,”
J. Cryst. Growth
437
,
20
25
(
2016
).
15.
C.
Bazioti
,
E.
Papadomanolaki
,
T.
Kehagias
,
T.
Walther
,
J.
Smalc-Koziorowska
,
E.
Pavlidou
,
P.
Komninou
,
T.
Karakostas
,
E.
Iliopoulos
, and
G. P.
Dimitrakopulos
, “
Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy
,”
J. Appl. Phys.
118
,
155301
(
2015
).
16.
H. K.
Cho
and
G. M.
Yang
, “
Generation of misfit dislocations in high indium content InGaN layer grown on GaN
,”
J. Cryst. Growth
243
,
124
128
(
2002
).
17.
F. A.
Ponce
,
S.
Srinivasan
,
A.
Bell
,
L.
Geng
,
R.
Liu
,
M.
Stevens
,
J.
Cai
,
H.
Omiya
,
H.
Marui
, and
S.
Tanaka
, “
Microstructure and electronic properties of InGaN alloys
,”
Phys. Status Solidi B
240
,
273
(
2003
).
18.
Y.
Zhang
,
M. J.
Kappers
,
D.
Zhu
,
F.
Oehler
,
F.
Gao
, and
C. J.
Humphreys
, “
The effect of dislocations on the efficiency of InGaN/GaN solar cells
,”
Sol. Energy Mater. Sol. Cells
117
,
279
284
(
2013
).
19.
L. T.
Romano
,
B. S.
Krusor
,
M. D.
McCluskey
,
D. P.
Bour
, and
K.
Nauka
, “
Structural and optical properties of pseudomorphic InxGa1−xN alloys
,”
Appl. Phys. Lett.
73
,
1757
1759
(
1998
).
20.
P.
Dłużewski
,
G.
Maciejewski
,
G.
Jurczak
,
S.
Kret
, and
J.-Y.
Laval
, “
Nonlinear FE analysis of residual stresses induced by dislocations in heterostructures
,”
Comput. Mater. Sci.
29
,
379
395
(
2004
).
21.
J. Z.
Domagala
,
S. L.
Morelhao
,
M.
Sarzynski
,
M.
Mazdziarz
,
P.
Dluzewski
, and
M.
Leszczynski
, “
Hybrid reciprocal lattice: Application to layer stress determination in GaAlN/GaN(0001) systems with patterned substrates
,”
J. Appl. Crystall.
49
,
798
805
(
2016
).
22.
A. F.
Wright
, “
Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN
,”
J. Appl. Phys.
82
,
2833
2839
(
1997
).
23.
I.
Belabbas
,
I. G.
Vasileiadis
,
J.
Moneta
,
J.
Smalc-Koziorowska
, and
G. P.
Dimitrakopulos
, “
Recombination of Shockley partial dislocations by electron beam irradiation in wurtzite GaN
,”
J. Appl. Phys.
126
,
165702
(
2019
).
24.
P.
Cantu
,
F.
Wu
,
P.
Waltereit
,
S.
Keller
,
A. E.
Romanov
,
S. P.
DenBaars
, and
J. S.
Speck
, “
Role of inclined threading dislocations in stress relaxation in mismatched layers
,”
J. Appl. Phys.
97
,
103534
(
2005
).
25.
M.
Zhu
,
S.
You
,
T.
Detchprohm
,
T.
Paskova
,
E. A.
Preble
,
D.
Hanser
, and
C.
Wetzel
, “
Inclined dislocation-pair relaxation mechanism in homoepitaxial green GaInN/GaN light-emitting diodes
,”
Phys. Rev. B
81
,
125325
(
2010
).
26.
D.
Du
and
D. J.
Srolovitz
, “
Faceted dislocation surface pits
,”
Acta Mater.
52
,
3365
3374
(
2004
).
27.
T.
Matsubara
,
S.
Goubara
,
K.
Yukizane
,
R.
Inomoto
,
N.
Okada
, and
K.
Tadatomo
, “
Visualization of dislocation behavior in HVPE-grown GaN using facet controlling techniques
,”
Phys. Status Solidi B
254
,
1600716
(
2017
).
28.
T.
Riemann
,
J.
Christen
,
B.
Beaumont
,
J.-P.
Faurie
, and
P.
Gibart
, “
Self-organized domain formation in low-dislocation-density GaN
,”
Superlatt. Microstruct.
36
,
833
847
(
2004
).
29.
J.
Smalc-Koziorowska
,
E.
Grzanka
,
R.
Czernecki
,
D.
Schiavon
, and
M.
Leszczynski
, “
Elimination of trench defects and V-pits from InGaN/GaN structures
,”
Appl. Phys. Lett.
106
,
101905
(
2015
).
30.
M.
Sarzyński
,
E.
Grzanka
,
S.
Grzanka
,
G.
Targowski
,
R.
Czernecki
,
A.
Reszka
,
V.
Holy
,
S.
Nitta
,
Z.
Liu
,
H.
Amano
, and
M.
Leszczyński
, “
Indium incorporation into InGaN quantum wells grown on GaN narrow stripes
,”
Materials
12
,
2583
(
2019
).
31.
B.
Jahnen
,
M.
Albrecht
,
W.
Dorsch
,
S.
Christiansen
,
H. P.
Strunk
,
D.
Hanser
, and
R. F.
Davis
, “
Pinholes, dislocations and strain relaxation in InGaN
,”
MRS Internet J. Nitride Semicond. Res.
3
,
39
(
1998
).
32.
R.
Liu
,
J.
Mei
,
S.
Srinivasan
,
F. A.
Ponce
,
H.
Omiya
,
Y.
Narukawa
, and
T.
Mukai
, “
Generation of misfit dislocations by basal-plane slip in InGaN/GaN heterostructures
,”
Appl. Phys. Lett.
89
,
201911
(
2006
).
33.
M.
Albrecht
,
H. P.
Strunk
,
J. L.
Weyher
,
I.
Grzegory
,
S.
Porowski
, and
T.
Wosinski
, “
Carrier recombination at single dislocations in GaN measured by cathodoluminescence in a transmission electron microscope
,”
J. Appl. Phys.
92
,
2000
2005
(
2002
).
34.
O.
Medvedev
,
O.
Vyvenko
,
E.
Ubyivovk
,
S.
Shapenkov
,
A.
Bondarenko
,
P.
Saring
, and
M.
Seibt
, “
Intrinsic luminescence and core structure of freshly introduced a-screw dislocations in n-GaN
,”
J. Appl. Phys.
123
,
161427
(
2018
).
35.
E. B.
Yakimov
,
P. S.
Vergeles
,
A. Y.
Polyakov
,
I. V.
Shchemerov
,
A. V.
Chernyh
,
A. A.
Vasilev
,
A. I.
Kochkova
,
I.-H.
Lee
, and
S. J.
Pearton
, “
Dislocations introduced in n-GaN at room temperature cause conductivity inversion
,”
J. Alloys Compd.
877
,
160281
(
2021
).
36.
I.
Yonenaga
,
M.
Deura
,
Y.
Tokumoto
,
K.
Kutsukake
, and
Y.
Ohno
, “
Insight into physical processes controlling the mechanical properties of the wurtzite group-III nitride family
,”
J. Cryst. Growth
500
,
23
27
(
2018
).
37.
J. M.
Wheeler
,
C.
Niederberger
,
C.
Tessarek
,
S.
Christiansen
, and
J.
Michler
, “
Extraction of plasticity parameters of GaN with high temperature, in situ micro-compression
,”
Int. J. Plast.
40
,
140
151
(
2013
).
38.
M.
Fujikane
,
T.
Yokogawa
,
S.
Nagao
, and
R.
Nowak
, “
Nanoindentation study on insight of plasticity related to dislocation density and crystal orientation in GaN
,”
Appl. Phys. Lett.
101
,
201901
(
2012
).
39.
I.
Ratschinski
,
H. S.
Leipner
,
F.
Heyroth
,
W.
Fränzel
,
O.
Moutanabbir
,
R.
Hammer
, and
M.
Jurisch
, “
Indentation-induced dislocations and cracks in (0001) freestanding and epitaxial GaN
,”
J. Phys.: Conf. Ser.
281
,
012007
(
2011
).
40.
E.
Krimsky
,
K. A.
Jones
,
R. P.
Tompkins
,
P.
Rotella
,
J.
Ligda
, and
B. E.
Schuster
, “
Nano-indentation used to study pyramidal slip in GaN single crystals
,”
J. Appl. Phys.
123
,
065701
(
2018
).
41.
J. L.
Weyher
,
M.
Albrecht
,
T.
Wosinski
,
G.
Nowak
,
H. P.
Strunk
, and
S.
Porowski
, “
Study of individual grown-in and indentation-induced dislocations in GaN by defect-selective etching and transmission electron microscopy
,”
Mater. Sci. Eng. B
80
,
318
(
2001
).
42.
Y.
Tokumoto
,
K.
Kutsukake
,
Y.
Ohno
, and
I.
Yonenaga
, “
Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation
,”
J. Appl. Phys.
112
,
093526
(
2012
).
43.
M.
Albrecht
,
L.
Lymperakis
, and
J.
Neugebauer
, “
Origin of the unusually strong luminescence of a-type screw dislocations in GaN
,”
Phys. Rev. B
90
,
241201
(
2014
).
44.
J.
Souto
,
J. L.
Pura
, and
J.
Jiménez
, “
Thermal and mechanical issues of high-power laser diode degradation
,”
MRS Commun.
8
,
995
999
(
2018
).
45.
D.
Pierścińska
,
K.
Pierściński
,
M.
Płuska
,
Ł
Marona
,
P.
Wiśniewski
,
P.
Perlin
, and
M.
Bugajski
, “
Examination of thermal properties and degradation of InGaN–based diode lasers by thermoreflectance spectroscopy and focused ion beam etching
,”
AIP Adv.
7
,
075107
(
2017
).
46.
Y.
El Gmili
,
G.
Orsal
,
K.
Pantzas
,
T.
Moudakir
,
S.
Sundaram
,
G.
Patriarche
,
J.
Hester
,
A.
Ahaitouf
,
J. P.
Salvestrini
, and
A.
Ougazzaden
, “
Multilayered InGaN/GaN structure vs.: Single InGaN layer for solar cell applications: A comparative study
,”
Acta Mater.
61
,
6587
6596
(
2013
).

Supplementary Material

You do not currently have access to this content.