Here, glancing angle deposition is employed to synthesize the undoped GeO2 and Mg-doped (0.4 and 0.8 at. %) GeO2 nanowires (NWs) on a Si substrate. The microscopic images show the formation of the NW-like morphology of the grown materials. The gradual decrease in the average ratio of length to diameter depicts the worsening of the formation of NWs with the incorporation of Mg into the GeO2 host lattice. This also affects the crystallinity characteristics of the materials, which have been demonstrated from the selected area electron diffraction (SAED) pattern of the materials. The polycrystallinity nature of undoped GeO2 NWs changes to amorphous due to the introduction of Mg, which has been confirmed from both the obtained SAED and x-ray diffraction patterns of the samples. The presence of Mg was confirmed from the obtained broad bands at 473 and 437 cm−1 in the Fourier transmission spectrum of the doped samples. The increasing conductance with the temperature of Au/undoped GeO2 devices can be explained by the thermionic emission process, whereas the Mg-GeO2 device shows an overall decrease in conductance with increasing temperature. We have ascribed the origin of this abnormal conductance as the positive temperature coefficient of resistance, which is one of the first reports, due to the generation of random grain boundaries and enormous electron trapping at the Au/Mg-GeO2 NW junction. Furthermore, the undoped GeO2 NW device shows good temperature-dependent conductivity as well as stability compared to the doped one.

1.
M.
Higashiwaki
,
R.
Kaplar
,
J.
Pernot
, and
H.
Zhao
,
Appl. Phys. Lett.
118
,
200401
(
2021
).
2.
R. A.
Jishi
,
R. J.
Appleton
, and
D. M.
Guzman
,
Appl. Phys. Lett.
117
,
232102
(
2020
).
3.
Y.
Lu
and
J. H.
Warner
,
ACS Appl. Electron. Mater.
2
,
1777
1814
(
2020
).
4.
S.
Mubeen
,
G.
Hernandez-Sosa
,
D.
Moses
,
J.
Lee
, and
M.
Moskovits
,
Nano Lett.
11
,
5548
5552
(
2011
).
5.
G.
Deng
,
K.
Saito
,
T.
Tanaka
,
M.
Arita
, and
Q.
Guo
,
Appl. Phys. Lett.
119
,
182101
(
2021
).
6.
C. V.
Ramana
,
G.
Carbajal-Franco
,
R. S.
Vemuri
,
I. B.
Troitskaia
,
S. A.
Gromilov
, and
V. V.
Atuchin
,
Mater. Sci. Eng. B
174
,
279
(
2010
).
7.
M.
Zhou
,
L.
Shao
, and
L.
Miao
,
J. Phys. Chem. A
106
,
6483
(
2002
).
8.
N.
Mathews
,
B.
Varghese
,
C.
Sun
,
V.
Thavasi
,
B. P.
Andreasson
,
C. H.
Sow
,
S.
Ramakrishna
, and
S. G.
Mhaisalkar
,
Nanoscale
2
,
1984
1998
(
2010
).
9.
C. S.
Hwang
,
B. T.
Lee
,
C. S.
Kang
,
J. W.
Kim
, and
K. H.
Lee
,
J. Appl. Phys.
83
,
3703
(
1998
).
10.
M.
Yang
,
Z.
Peng
,
C.
Wang
, and
X.
Fu
,
Ceram. Int.
42
(
15
),
17792
17797
(
2016
).
11.
W.
Heywang
,
Solid-State Electron.
3
,
51
58
(
1961
).
12.
M.
Acosta
,
N.
Novak
,
V.
Rojas
,
S.
Patel
,
R.
Vaish
,
J.
Koruza
,
G. A.
Rossetti
, Jr.
, and
J.
Rodel
,
Appl. Phys. Rev.
4
,
041305
(
2017
).
13.
W.
Heywang
,
J. Am. Ceram. Soc.
47
(
10
),
484
490
(
1964
).
14.
L.
Mazet
,
S. M.
Yang
,
S. V.
Kalinin
,
S.
Schamm-Chardon
, and
C.
Dubourdieu
,
Sci. Technol. Adv. Mater.
16
,
036005
(
2015
).
15.
B.
Huybrechts
,
K.
Ishizaki
, and
M.
Takata
,
J. Mater. Sci.
30
,
2463
2474
(
1995
).
16.
T.
Moon
,
H. J.
Lee
,
K. D.
Kim
,
Y. H.
Lee
,
S. D.
Hyun
,
H. W.
Park
,
Y. B.
Lee
,
B. S.
Kim
, and
C. S.
Hwang
,
Adv. Electron. Mater.
4
(
2018
),
1800388
(
2018
).
17.
M.
Gaidi
,
M.
Chaker
,
P. F.
Ndione
,
R.
Morandotti
, and
B.
Bessaïs
,
J. Appl. Phys.
101
,
063107
(
2017
).
18.
D. S.
Jeong
,
K. H.
Ahn
,
W. Y.
Park
, and
C. S.
Hwang
,
Appl. Phys. Lett.
84
,
94
(
2004
).
19.
C.
Ghosh
,
S. M. M. D.
Dwivedi
,
A.
Ghosh
,
A.
Dalal
, and
A.
Mondal
,
Appl. Phys. A
125
,
910
(
2019
).
20.
N.
Bose
,
M.
Basu
, and
S.
Mukherjee
,
Mater. Res. Bull.
47
,
1368
1373
(
2012
).
21.
H.
Wang
,
J. F.
Liu
,
H. P.
Wu
,
Y.
He
,
W.
Chen
,
Y.
Wang
,
Y. W.
Zeng
,
Y. W.
Wang
,
C. J.
Luo
,
J.
Liu
,
T. D.
Hu
,
K.
Stahl
, and
J. Z.
Jiang
,
J. Phys.: Condens. Matter.
18
,
10817
10824
(
2006
).
22.
Y.
Li
,
S.
Peng
,
F.
Jiang
,
G.
Lu
, and
S.
Li
,
J. Serb. Chem. Soc.
72
,
393
(
2007
).
23.
R. S.
Dubey
and
S.
Singh
,
Physics
7
,
1283
1285
(
2017
).
24.
D.
Trandafir
,
M.
Vasilescu
, and
S.
Simon
,
J. Sol-Gel Sci. Technol.
63
,
425
434
(
2012
).
25.
Mineral Physics & Crystallography: A Handbook of Physical Constants,
edited by
J. F.
Stebbins
and
T. J.
Arhens
(
American Geophysical Union
,
Washington
,
1995
).
26.
G. N.
Barbosa
and
H. P.
Oliveira
,
J. Non-Cryst. Solids
352
,
3009
3014
(
2006
).
27.
V.
Lobaz
,
M.
Rabyk
,
J.
Pánek
,
E.
Doris
,
F.
Nallet
,
P.
Štěpánek
, and
M.
Hrubý
,
Colloid Polym. Sci.
294
,
1225
1235
(
2016
).
28.
Y.
Kim
,
J.
Saienga
, and
S. W.
Martin
,
J. Non-Cryst. Solids
351
,
3716
3724
(
2005
).
29.
H. R.
Bahari
,
H. A. A.
Sidek
,
F. R. M.
Adikan
,
W. M. M.
Yunus
, and
M. K.
Halimah
,
Int. J. Mol. Sci.
13
,
8609
8614
(
2012
).
30.
G. S.
Henderson
and
M. E.
Fleet
,
J. Non-Cryst. Solids
134
,
259
269
(
1991
).
31.
R.
Kaindl
,
D. M.
Többens
,
S.
Penner
,
T.
Bielz
,
S.
Soisuwan
, and
B.
Klötzer
,
Phys. Chem. Minerals
39
,
47
55
(
2011
).
32.
R.
Köferstein
,
L.
Jäger
,
M.
Zenkner
, and
H. P.
Abicht
,
Thermochim. Acta
457
,
55
63
(
2007
).
33.
A. N.
Lazarev
,
T. F.
Tenisheva
, and
R. G.
Grebenshchikov
,
Dokl. Akad. Nauk SSSR
140
,
811
814
(
1961
).
34.
I. S.
Ignat'ev
and
A. N.
Lazarev
,
Izv. Nauk Akad. Neorg. Mater.
8
(
2
),
280
284
(
1972
).
35.
D. K.
Breitinger
,
T.
Grützner
,
H.
Wick
,
O.
Schimmer
, and
H.
Eschelbach
,
J. Mol. Struct.
408/409
,
383
386
(
1997
).
36.
P. A. W.
Dean
,
D. F.
Evans
, and
R. F.
Philips
,
J. Chem. Soc. A
1969
363
366
.
37.
P.
Tarte
and
A. E.
Ringwood
,
Nature
201
(
4921
),
819
(
1964
).
38.
G.
Gutiérrez
,
E.
Menéndez-Proupin
,
C.
Loyola
,
J.
Peralta
, and
S.
Davis
,
J. Mater. Sci.
45
,
5124
5134
(
2010
).
39.
J.
Peralta
,
G.
Gutiérrez
, and
J.
Rogan
,
J. Phys.: Condens. Matter
20
,
145215
(
2008
).
40.
Y.
Takahashi
,
K.
Iwasaki
,
H.
Masai
, and
T.
Fujiwara
,
J. Cer. Soc. Jpn.
116
(
10
),
1139
1142
(
2008
).
41.
F.
Mohandes
,
F.
Davar
, and
M.
Salavati-Niasari
,
J. Phys. Chem. Solids
71
,
1623
(
2010
).
42.
J. A.
McLeod
,
J.
Zhao
,
L.
Yang
,
Y.
Liu
, and
L.
Liu
,
Phys. Chem. Chem. Phys.
19
,
3182
3191
(
2017
).
43.
A.
Choudhury
,
A.
Dalal
,
S. M. M.
Dhar Dwivedi
,
A.
Ghosh
,
N.
Halder
,
S.
Das
, and
A.
Mondal
,
Mater. Res. Bull.
142
,
111397
(
2021
).
44.
B.
Walker
,
C. C.
Dharmawardhana
,
N.
Dari
,
P.
Rulis
, and
W. Y.
Ching
,
J. Non-Cryst. Solids
428
,
176
183
(
2015
).
45.
P. K. D.
Boer
and
R. A. D.
Groot
,
J. Phys.: Condens. Matter
10
,
10241
10248
(
1998
).
46.
M.
Ménétrey
,
A.
Markovits
, and
C.
Minot
,
J. Mol. Struct.
808
,
71
79
(
2007
).
47.
M.
Okano
,
D.
Sawamura
, and
Y.
Watanabe
,
J. Appl. Phys.
37
,
5101
(
1998
).
48.
M.
Yashima
,
T.
Hoshina
,
D.
Ishimura
,
S.
Kobayashi
,
W.
Nakamura
,
T.
Tsurumi
, and
S.
Wada
,
J. Appl. Phys.
98
(
1
),
014313
(
2005
).
49.
Y. L.
Chen
and
S. F.
Yang
,
Adv. App. Ceram.
110
(
5
),
257
269
(
2011
).
50.
A.
Dey
,
R.
Jana
,
J.
Dhar
,
P.
Das
, and
P. P.
Ray
,
Mater. Today Proc.
5
,
9958
9964
(
2018
).
51.
G. H.
Jonker
,
Solid-State Electron.
7
(
12
),
895
903
(
1964
).
52.
T.
Ota
,
I.
Yamai
, and
J.
Takahashi
,
J. Am. Ceram. Soc.
75
(
7
),
1772
1776
(
1992
).
53.
D.
Lisjak
,
M.
Drofenik
, and
D.
Kolar
,
J. Mater. Res.
15
(
2
),
417
428
(
2000
).
You do not currently have access to this content.