The resistivity size effect in the ordered intermetallic CuTi compound is quantified using in situ and ex situ thin film resistivity ρ measurements at 295 and 77 K, and density functional theory Fermi surface and electron–phonon scattering calculations. Epitaxial CuTi(001) layers with thickness d = 5.8–149 nm are deposited on MgO(001) at 350 °C and exhibit ρ vs d data that are well described by the classical Fuchs and Sondheimer model, indicating a room-temperature effective electron mean free path λ = 12.5 ± 0.6 nm, a bulk resistivity ρo = 19.5 ± 0.3 μΩ cm, and a temperature-independent product ρoλ = 24.7 × 10−16 Ω m2. First-principles calculations indicate a strongly anisotropic Fermi surface with electron velocities ranging from 0.7 × 105 to 6.6 × 105 m/s, electron–phonon scattering lengths of 0.8–8.5 nm (with an average of 4.6 nm), and a resulting ρo = 20.6 ± 0.2 μΩ cm in the (001) plane, in excellent agreement (7% deviation) with the measurements. However, the measured ρoλ is almost 2.4 times larger than predicted, indicating a break-down of the classical transport models. Air exposure causes a 6%–30% resistivity increase, suggesting a transition from partially specular (p = 0.5) to completely diffuse surface scattering due to surface oxidation as detected by x-ray photoelectron spectroscopy. Polycrystalline CuTi layers deposited on SiO2/Si substrates exhibit a 001 texture, a grain width that increases with d, and a 74%–163% larger resistivity than the epitaxial layers due to electron scattering at grain boundaries. The overall results suggest that CuTi is a promising candidate for highly scaled interconnects in integrated circuits only if it facilitates liner-free metallization.

2.
S.
Salahuddin
,
K.
Ni
, and
S.
Datta
,
Nat. Electron.
1
,
442
(
2018
).
3.
W.-H.
Xu
,
L.
Wang
,
Z.
Guo
,
X.
Chen
,
J.
Liu
, and
X.-J.
Huang
,
ACS Nano
9
,
241
(
2015
).
4.
H. J.
Han
,
P.
Liu
, and
J. J.
Cha
,
Matter
4
,
2596
(
2021
).
5.
J.
Chawla
and
D.
Gall
,
Appl. Phys. Lett.
94
,
252101
(
2009
).
6.
J.
Chawla
,
F.
Gstrein
,
K.
O’Brien
,
J.
Clarke
, and
D.
Gall
,
Phys. Rev. B
84
,
235423
(
2011
).
7.
D.
Gall
,
J. J.
Cha
,
Z.
Chen
,
H.-J.
Han
,
C.
Hinkle
,
J. A.
Robinson
,
R.
Sundararaman
, and
R.
Torsi
,
MRS Bull.
46
,
959
(
2021
).
8.
D.
Gall
,
J. Appl. Phys.
127
,
050901
(
2020
).
9.
K.
Fuchs
,
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1938
), pp.
100
108
.
10.
11.
A.
Mayadas
and
M.
Shatzkes
,
Phys. Rev. B
1
,
1382
(
1970
).
12.
D.
Gall
,
J. Appl. Phys.
119
,
085101
(
2016
).
13.
C.
Adelmann
,
K.
Sankaran
,
S.
Dutta
,
A.
Gupta
,
S.
Kundu
,
G.
Jamieson
,
K.
Moors
,
N.
Pinna
,
I.
Ciofi
, and
S.
Van Eishocht
, in
2018 IEEE International Interconnect Technology Conference (IITC)
(
IEEE
,
2018
), pp.
154
156
.
14.
N. A.
Lanzillo
,
J. Appl. Phys.
121
,
175104
(
2017
).
15.
E.
Milosevic
,
S.
Kerdsongpanya
,
A.
Zangiabadi
,
K.
Barmak
,
K. R.
Coffey
, and
D.
Gall
,
J. Appl. Phys.
124
,
165105
(
2018
).
16.
P.
Zheng
and
D.
Gall
,
J. Appl. Phys.
122
,
135301
(
2017
).
17.
E.
Milosevic
,
S.
Kerdsongpanya
,
M. E.
McGahay
,
A.
Zangiabadi
,
K.
Barmak
, and
D.
Gall
,
J. Appl. Phys.
125
,
245105
(
2019
).
18.
A.
Jog
,
T.
Zhou
, and
D.
Gall
,
IEEE Trans. Electron Devices
68
,
257
(
2021
).
19.
J.
Chawla
and
D.
Gall
,
J. Appl. Phys.
111
,
043708
(
2012
).
20.
E.
Milosevic
,
P.
Zheng
, and
D.
Gall
,
IEEE Trans. Electron Devices
66
,
4326
(
2019
).
21.
E.
Milosevic
,
S.
Kerdsongpanya
,
M. E.
McGahay
,
B.
Wang
, and
D.
Gall
,
IEEE Trans. Electron Devices
66
,
3473
(
2019
).
22.
A.
Jog
and
D.
Gall
,
J. Appl. Phys.
130
,
115103
(
2021
).
23.
K.
Sankaran
,
K.
Moors
,
Z.
Tőkei
,
C.
Adelmann
, and
G.
Pourtois
,
Phys. Rev. Mater.
5
,
056002
(
2021
).
24.
M.
Zhang
,
S.
Kumar
,
R.
Sundararaman
, and
D.
Gall
,
J. Appl. Phys.
130
,
034302
(
2021
).
25.
S.
Kumar
,
C.
Multunas
,
B.
Defay
,
D.
Gall
, and
R.
Sundararaman
,
Phys. Rev. Mater.
6
,
085002
(
2022
).
26.
J.-P.
Soulié
,
Z.
Tőkei
,
J.
Swerts
, and
C.
Adelmann
, in
2021 IEEE International Interconnect Technology Conference (IITC)
(
IEEE
,
2021
), pp.
1
3
.
27.
L.
Chen
,
D.
Ando
,
Y.
Sutou
,
D.
Gall
, and
J.
Koike
,
Appl. Phys. Lett.
113
,
183503
(
2018
).
28.
J.-P.
Soulié
,
Z.
Tőkei
,
J.
Swerts
, and
C.
Adelmann
, in
2020 IEEE International Interconnect Technology Conference (IITC)
(
IEEE
,
2020
), pp.
151
153
.
29.
L.
Chen
,
D.
Ando
,
Y.
Sutou
, and
J.
Koike
,
J. Vac. Sci. Technol. B
37
,
031215
(
2019
).
30.
M.
Zhang
and
D.
Gall
,
IEEE Trans. Electron Devices
69
,
5110
(
2022
).
31.
L.
Chen
,
Q.
Chen
,
D.
Ando
,
Y.
Sutou
,
M.
Kubo
, and
J.
Koike
,
Appl. Surf. Sci.
537
,
148035
(
2021
).
32.
L.
Chen
,
S.
Kumar
,
M.
Yahagi
,
D.
Ando
,
Y.
Sutou
,
D.
Gall
,
R.
Sundararaman
, and
J.
Koike
,
J. Appl. Phys.
129
,
035301
(
2021
).
33.
T.
Kuge
,
M.
Yahagi
, and
J.
Koike
, in
2021 IEEE International Interconnect Technology Conference (IITC)
(
IEEE
,
2021
), pp.
1
3
.
34.
S.
Rogachev
,
O.
Politano
,
F.
Baras
, and
A.
Rogachev
,
J. Non-Cryst. Solids
505
,
202
(
2019
).
35.
V.
Eremenko
,
Y. I.
Buyanov
, and
S.
Prima
,
Sov. Powder Metall. Met. Ceram.
5
,
494
(
1966
).
36.
B.
Wang
,
S.
Kerdsongpanya
,
M. E.
McGahay
,
E.
Milosevic
,
P.
Patsalas
, and
D.
Gall
,
J. Vac. Sci. Technol. A
36
,
061501
(
2018
).
37.
J.
Purswani
and
D.
Gall
,
Thin Solid Films
516
,
465
(
2007
).
38.
M. E.
McGahay
and
D.
Gall
,
Appl. Phys. Lett.
114
,
131602
(
2019
).
40.
L. G.
Parratt
,
Phys. Rev.
95
,
359
(
1954
).
41.
M.
Mayer
,
Nucl. Instrum. Methods Phys. Res. Sect. B
332
,
176
(
2014
).
42.
R.
Sundararaman
,
K.
Letchworth-Weaver
,
K. A.
Schwarz
,
D.
Gunceler
,
Y.
Ozhabes
, and
T.
Arias
,
SoftwareX
6
,
278
(
2017
).
43.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Comput. Mater. Sci.
81
,
446
(
2014
).
44.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
45.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and K. A. Persson,
APL Mater.
1
,
011002
(
2013
).
46.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
47.
A.
Habib
,
F.
Florio
, and
R.
Sundararaman
,
J. Opt.
20
,
064001
(
2018
).
48.
S.
Kumar
,
C.
Multunas
, and
R.
Sundararaman
,
Phys. Rev. Mater.
6, 125201 (
2022
).
49.
J.
Murray
,
Bull. Alloy Phase Diagrams
4
,
81
(
1983
).
50.
B.
Wang
and
D.
Gall
,
Thin Solid Films
688
,
137165
(
2019
).
51.
P.
Zheng
,
B. D.
Ozsdolay
, and
D.
Gall
,
J. Vac. Sci. Technol. A
33
,
061505
(
2015
).
52.
B.
Wels
and
D. C.
Johnson
,
J. Electrochem. Soc.
137
,
2785
(
1990
).
53.
D. E.
Giammar
,
C. J.
Maus
, and
L.
Xie
,
Environ. Eng. Sci.
24
,
85
(
2007
).
54.
A.
Baski
and
H.
Fuchs
,
Surf. Sci.
313
,
275
(
1994
).
55.
M.
Ritala
,
M.
Leskelä
,
L.
Niinistö
,
T.
Prohaska
,
G.
Friedbacher
, and
M.
Grasserbauer
,
Thin Solid Films
250
,
72
(
1994
).
56.
P.
Zheng
,
T.
Zhou
,
B.
Engler
,
J.
Chawla
,
R.
Hull
, and
D.
Gall
,
J. Appl. Phys.
122
,
095304
(
2017
).
57.
J.
Frederick
,
J.
D'Arcy-Gall
, and
D.
Gall
,
Thin Solid Films
494
,
330
(
2006
).
58.
S.
Vézian
,
F.
Natali
,
F.
Semond
, and
J.
Massies
,
Phys. Rev. B
69
,
125329
(
2004
).
59.
M. C.
Biesinger
,
L. W.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
,
Appl. Surf. Sci.
257
,
887
(
2010
).
60.
J.
Chastain
and
R. C.
King
, Jr
., “Handbook of X-ray photoelectron spectroscopy,” (Perkin-Elmer Corporation, 1992), Vol. 40, p. 221.
61.
J.
Chawla
,
F.
Zahid
,
H.
Guo
, and
D.
Gall
,
Appl. Phys. Lett.
97
,
132106
(
2010
).
62.
A.
Jog
,
E.
Milosevic
,
P.
Zheng
, and
D.
Gall
,
Appl. Phys. Lett.
120
,
041601
(
2022
).
63.
A.
Jog
and
D.
Gall
,
IEEE Trans. Electron Devices
69
,
3854
(
2022
).
64.
D.
Gall
,
A.
Jog
, and
T.
Zhou
, in
2020 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2020
), pp.
32.3.1
32.3.4
.
65.
P.
Zheng
,
T.
Zhou
, and
D.
Gall
,
Semicond. Sci. Technol.
31
,
055005
(
2016
).
66.
P.
Zheng
,
R.
Deng
, and
D.
Gall
,
Appl. Phys. Lett.
105
,
131603
(
2014
).
67.
E.
Milosevic
and
D.
Gall
,
IEEE Trans. Electron Devices
66
,
2692
(
2019
).
68.
T.
Zhou
,
P.
Zheng
,
S. C.
Pandey
,
R.
Sundararaman
, and
D.
Gall
,
J. Appl. Phys.
123
,
155107
(
2018
).
69.
Y.
Namba
,
Jpn. J. Appl. Phys.
9
,
1326
(
1970
).
70.
Z.
Tešanović
,
M. V.
Jarić
, and
S.
Maekawa
,
Phys. Rev. Lett.
57
,
2760
(
1986
).
71.
T.
Zhou
and
D.
Gall
,
Phys. Rev. B
97
,
165406
(
2018
).
72.
G.
Utlu
,
N.
Artunc
, and
S.
Selvi
,
Mater. Chem. Phys.
132
,
421
(
2012
).
73.
T.
Zhou
,
A.
Jog
, and
D.
Gall
,
Appl. Phys. Lett.
120
,
241603
(
2022
).
74.
K.
Barmak
,
A.
Darbal
,
K. J.
Ganesh
,
P. J.
Ferreira
,
J. M.
Rickman
,
T.
Sun
,
B.
Yao
,
A. P.
Warren
, and
K. R.
Coffey
,
J. Vac. Sci. Technol. A
32
,
061503
(
2014
).
You do not currently have access to this content.