AlGaN-based heterostructures are promising candidates for the fabrication of ultraviolet light-emitting diodes. The analysis of the atomic composition of the grown epitaxial films is important from a technological point of view, allowing precise control over the wavelength and intensity of the emitted light. In this work, the depth profiling of AlN(0001), AlGaN(0001), and AlGaN quantum dot surfaces grown by molecular beam epitaxy was carried out by using angle-resolved x-ray photoelectron spectroscopy (XPS) combined with Ar gas cluster ion source (GCIS) sputtering. Core level shifts in XPS spectra measured by Al Kα and Ag Lα photon sources were determined. We found that sputtering by Ar1000+ ion clusters with an energy of 10 keV creates disorder on the surface and induces changes in surface atomic composition. As a result, depth profiling with a typical surface-sensitive Al Kα photon source is affected by the damaged layer. The application of a less surface-sensitive Ag Lα photon source with high photon energy could suppress the contribution from the damaged surface layer. Combining GCIS sputtering with Ag Lα line XPS measurements is, therefore, very promising for the quantification of atomic composition in the buried epitaxial layers or heterostructures with thicknesses of several tens of nm.

1.
Y.
Muramoto
,
M.
Kimura
, and
S.
Nouda
, “
Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp
,”
Semicond. Sci. Technol.
29
,
084004
(
2014
).
2.
T.
Hashizume
,
S.
Ootomo
,
R.
Nakasaki
,
S.
Oyama
, and
M.
Kihara
, “
X-ray photoelectron spectroscopy characterization of AlGaN surfaces exposed to air and treated in NH4OH solution
,”
Appl. Phys. Lett.
76
,
2880
2882
(
2000
).
3.
A.
Khan
,
K.
Balakrishnan
, and
T.
Katona
, “
Ultraviolet light-emitting diodes based on group three nitrides
,”
Nat. Photon.
2
,
77
84
(
2008
).
4.
H.
Hirayama
,
S.
Fujikawa
, and
N.
Kamata
, “
Recent progress in AlGaN-based deep-UV LEDs
,”
Electron Comm. Jpn.
98
,
1
8
(
2015
).
5.
J.
Brault
,
B.
Damilano
,
A.
Kahouli
,
S.
Chenot
,
M.
Leroux
,
B.
Vinter
, and
J.
Massies
, “
Ultra-violet GaN/Al0.5Ga0.5 N quantum dot based light emitting diodes
,”
J. Cryst. Growth.
363
,
282
286
(
2013
).
6.
J.
Brault
,
M. A.
Khalfioui
,
S.
Matta
,
B.
Damilano
,
M.
Leroux
,
S.
Chenot
,
M.
Korytov
,
J. E.
Nkeck
,
P.
Vennéguès
,
J.
Duboz
,
J.
Massies
, and
B.
Gil
, “
UVA and UVB light emitting diodes with Aly Ga1−y N quantum dot active regions covering the 305–335 nm range
,”
Semicond. Sci. Technol.
33
,
075007
(
2018
).
7.
C. J.
Zollner
,
S. P.
DenBaars
,
J. S.
Speck
, and
S.
Nakamura
, “
Germicidal ultraviolet LEDs: A review of applications and semiconductor technologies
,”
Semicond. Sci. Technol.
36
,
123001
(
2021
).
8.
Y.-H.
Cho
,
B. J.
Kwon
,
J.
Barjon
,
J.
Brault
,
B.
Daudin
,
H.
Mariette
, and
L. S.
Dang
, “
Optical characteristics of hexagonal GaN self-assembled quantum dots: Strong influence of built-in electric field and carrier localization
,”
Appl. Phys. Lett.
81
,
4934
4936
(
2002
).
9.
J.
Brault
,
D.
Rosales
,
B.
Damilano
,
M.
Leroux
,
A.
Courville
,
M.
Korytov
,
S.
Chenot
,
P.
Vennéguès
,
B.
Vinter
,
P.
De Mierry
,
A.
Kahouli
,
J.
Massies
,
T.
Bretagnon
, and
B.
Gil
, “
Polar and semipolar GaN/Al 0.5 Ga 0.5 N nanostructures for UV light emitters
,”
Semicond. Sci. Technol.
29
,
084001
(
2014
).
10.
S.
Nitta
,
Y.
Yukawa
,
Y.
Watanabe
,
S.
Kamiyama
,
H.
Amano
, and
I.
Akasaki
, “
Mass transport of AlxGa1—xN
,”
Phys. Status Solidi A
194
,
485
488
(2002).
11.
M.
Nemoz
,
R.
Dagher
,
S.
Matta
,
A.
Michon
,
P.
Vennéguès
, and
J.
Brault
, “
Dislocation densities reduction in MBE-grown AlN thin films by high-temperature annealing
,”
J. Cryst. Growth
461
,
10
15
(
2017
).
12.
M. A.
Khan
,
N.
Maeda
,
J.
Yun
,
M.
Jo
,
Y.
Yamada
, and
H.
Hirayama
, “
Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance
,”
Sci. Rep.
12
,
2591
(
2022
).
13.
J.
Brault
,
S.
Matta
,
T.-H.
Ngo
,
M.
Al Khalfioui
,
P.
Valvin
,
M.
Leroux
,
B.
Damilano
,
M.
Korytov
,
V.
Brändli
,
P.
Vennéguès
,
J.
Massies
, and
B.
Gil
, “
Internal quantum efficiencies of AlGaN quantum dots grown by molecular beam epitaxy and emitting in the UVA to UVC ranges
,”
J. Appl. Phys.
126
,
205701
(
2019
).
14.
J.
Brault
,
M. A.
Khalfioui
,
S.
Matta
,
T. H.
Ngo
,
S.
Chenot
,
M.
Leroux
,
P.
Valvin
, and
B.
Gil
, “
UVB LEDs grown by molecular beam epitaxy using AlGaN quantum dots
,”
Crystals.
10
,
1097
(
2020
).
15.
J.
Woicik
,
Hard X-ray Photoelectron Spectroscopy (HAXPES)
(
Springer International Publishing
,
Cham
,
2016
).
16.
O.
Romanyuk
,
O.
Supplie
,
A.
Paszuk
,
J. P.
Stoeckmann
,
R. G.
Wilks
,
J.
Bombsch
,
C.
Hartmann
,
R.
Garcia-Diez
,
S.
Ueda
,
I.
Bartoš
,
I.
Gordeev
,
J.
Houdkova
,
P.
Kleinschmidt
,
M.
Bär
,
P.
Jiříček
, and
T.
Hannappel
, “
Hard x-ray photoelectron spectroscopy study of core level shifts at buried GaP/Si(001) interfaces
,”
Surf. Interface Anal.
52
,
933
938
(
2020
).
17.
A. G.
Shard
,
J. D. P.
Counsell
,
D. J. H.
Cant
,
E. F.
Smith
,
P.
Navabpour
,
X.
Zhang
, and
C. J.
Blomfield
, “
Intensity calibration and sensitivity factors for XPS instruments with monochromatic Ag Lα and Al Kα sources
,”
Surf. Interface Anal.
51
,
763
773
(
2019
).
18.
H.
Yang
,
X.
Zhang
,
S.
Wang
,
M.
Zhu
,
Y.
Cui
, and
N.
Dai
, “
Surface properties of AlN and AlxGa1−xN epitaxial layers characterized by angle resolved X-ray photoelectron spectroscopy
,”
J. Mater. Sci. Mater. Electron.
26
,
950
954
(
2015
).
19.
P.
Motamedi
and
K.
Cadien
, “
XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition
,”
Appl. Surf. Sci.
315
,
104
109
(
2014
).
20.
L.
Rosenberger
,
R.
Baird
,
E.
McCullen
,
G.
Auner
, and
G.
Shreve
, “
XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy
,”
Surf. Interface Anal.
40
,
1254
1261
(
2008
).
21.
A.
Rice
,
R.
Collazo
,
J.
Tweedie
,
R.
Dalmau
,
S.
Mita
,
J.
Xie
, and
Z.
Sitar
, “
Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition
,”
J. Appl. Phys.
108
,
043510
(
2010
).
22.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
, “
Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures: Structural properties of deposited AlN films
,”
Phys. Status Solidi A.
209
,
266
271
(
2012
).
23.
N.
Gungor
and
M.
Alevli
, “
Oxygen incorporation in AlN films grown by plasma-enhanced atomic layer deposition
,”
J. Vac. Sci. Technol. A
40
,
022404
(
2022
).
24.
F.
González-Posada
,
J. A.
Bardwell
,
S.
Moisa
,
S.
Haffouz
,
H.
Tang
,
A. F.
Braña
, and
E.
Muñoz
, “
Surface cleaning and preparation in AlGaN/GaN-based HEMT processing as assessed by x-ray photoelectron spectroscopy
,”
Appl. Surf. Sci.
253
,
6185
6190
(
2007
).
25.
B.
Boudjelida
,
M. C.
Simmonds
,
I.
Gee
, and
S. A.
Clark
, “
The influence of chemical treatment and thermal annealing on AlxGa1−xN surfaces: An XPS study
,”
Appl. Surf. Sci.
252
,
5189
5196
(
2006
).
26.
A. V.
Kuchuk
,
H. V.
Stanchu
,
C.
Li
,
M. E.
Ware
,
Y. I.
Mazur
,
V. P.
Kladko
,
A. E.
Belyaev
, and
G. J.
Salamo
, “
Measuring the depth profiles of strain/composition in AlGaN-graded layer by high-resolution x-ray diffraction
,”
J. Appl. Phys.
116
,
224302
(
2014
).
27.
P. A.
Yunin
,
Y. N.
Drozdov
,
M. N.
Drozdov
,
O. I.
Khrykin
, and
V. I.
Shashkin
, “
Quantitative SIMS depth profiling of Al in AlGaN/AlN/GaN HEMT structures with nanometer-thin layers: Quantitative SIMS depth profiling of AlGaN HEMT structures
,”
Surf. Interface Anal.
49
,
117
121
(
2017
).
28.
W.
Lisowski
,
E.
Grzanka
,
J. W.
Sobczak
,
M.
Krawczyk
,
A.
Jablonski
,
R.
Czernecki
,
M.
Leszczyński
, and
T.
Suski
, “
XPS method as a useful tool for studies of quantum well epitaxial materials: Chemical composition and thermal stability of InGaN/GaN multilayers
,”
J. Alloys Compd.
597
,
181
187
(
2014
).
29.
J.
Counsell
,
M.
Hayne
,
T.
Wilson
, and
A.
Robson
, Quantification of layer composition in compound semiconductors (
2018
). .
30.
J.-F.
Veyan
,
E.
de Obaldia
,
J. J.
Alcantar-Peña
,
J.
Montes-Gutierrez
,
M. J.
Arellano-Jimenez
,
M.
José Yacaman
, and
O.
Auciello
, “
Argon atoms insertion in diamond: New insights in the identification of carbon C 1 s peak in X-ray photoelectron spectroscopy analysis
,”
Carbon
134
,
29
36
(
2018
).
31.
I.
Yamada
, “
Historical milestones and future prospects of cluster ion beam technology
,”
Appl. Surf. Sci.
310
,
77
88
(
2014
).
32.
P. J.
Cumpson
,
J. F.
Portoles
,
A. J.
Barlow
,
N.
Sano
, and
M.
Birch
, “
Depth profiling organic/inorganic interfaces by argon gas cluster ion beams: Sputter yield data for biomaterials, in-vitro diagnostic and implant applications: Organic/inorganic interfaces by GCIB
,”
Surf. Interface Anal.
45
,
1859
1868
(
2013
).
33.
M.
Nagano
,
S.
Yamada
,
S.
Akita
,
S.
Houzumi
,
N.
Toyoda
, and
I.
Yamada
, “
Low-damage sputtering of GaAs and GaP using size-selected Ar cluster Ion beams
,”
Jpn. J. Appl. Phys.
44
,
L164
L166
(
2005
).
34.
A. J.
Barlow
,
J. F.
Portoles
, and
P. J.
Cumpson
, “
Observed damage during argon gas cluster depth profiles of compound semiconductors
,”
J. Appl. Phys.
116
,
054908
(
2014
).
35.
O.
Romanyuk
,
I.
Gordeev
,
A.
Paszuk
,
O.
Supplie
,
J. P.
Stoeckmann
,
J.
Houdkova
,
E.
Ukraintsev
,
I.
Bartoš
,
P.
Jiříček
, and
T.
Hannappel
, “
Gap/Si(0 0 1) interface study by XPS in combination with Ar gas cluster ion beam sputtering
,”
Appl. Surf. Sci.
514
,
145903
(
2020
).
36.
A. J.
Roberts
and
C. E.
Moffitt
, “
Trends in XPS instrumentation for industrial surface analysis and materials characterisation
,”
J. Electron Spectrosc. Relat. Phenom.
231
,
68
74
(
2019
).
37.
S.
Matta
,
J.
Brault
,
M.
Korytov
,
T. Q.
Phuong Vuong
,
C.
Chaix
,
M.
Al Khalfioui
,
P.
Vennéguès
,
J.
Massies
, and
B.
Gil
, “
Properties of AlN layers grown on c-sapphire substrate using ammonia assisted MBE
,”
J. Cryst. Growth
499
,
40
46
(
2018
).
38.
KolXPD, see https://www.kolibrik.net/en/solutions-products/kolxpd for “Software for spectroscopy data measurement and processing.”
39.
S.
Matta
,
J.
Brault
,
T. H.
Ngo
,
B.
Damilano
,
M.
Korytov
,
P.
Vennéguès
,
M.
Nemoz
,
J.
Massies
,
M.
Leroux
, and
B.
Gil
, “
Influence of the heterostructure design on the optical properties of GaN and Al 0.1 Ga 0.9 N quantum dots for ultraviolet emission
,”
J. Appl. Phys.
122
,
085706
(
2017
).
40.
B.
Tilakaratne
,
Q.
Chen
, and
W.-K.
Chu
, “
Self-assembled gold nano-ripple formation by gas cluster ion beam bombardment
,”
Materials
10
,
1056
(
2017
).
41.
A. J.
Barlow
,
N.
Sano
,
B. J.
Murdoch
,
J. F.
Portoles
,
P. J.
Pigram
, and
P. J.
Cumpson
, “
Observing the evolution of regular nanostructured indium phosphide after gas cluster ion beam etching
,”
Appl. Surf. Sci.
459
,
678
685
(
2018
).
42.
W. S. M.
Werner
,
W.
Smekal
, and
C. J.
Powell
,
Simulation of Electron Spectra for Surface Analysis (SESSA) Version 2.1 User’s Guide
(
National Institute of Standards and Technology
,
Gaithersburg
,
MD
,
2017
).

Supplementary Material

You do not currently have access to this content.