We present efficient numerical methods for the simulation of small magnetization oscillations in three-dimensional micromagnetic systems. Magnetization dynamics is described by the Landau–Lifshitz–Gilbert equation, linearized in the frequency domain around a generic equilibrium configuration, and formulated in a special operator form that allows leveraging large-scale techniques commonly used to evaluate the effective field in time-domain micromagnetic simulations. By using this formulation, we derive numerical algorithms to compute the free magnetization oscillations (i.e., spin wave eigenmodes) as well as magnetization oscillations driven by ac radio-frequency fields for arbitrarily shaped nanomagnets. Moreover, semi-analytical perturbation techniques based on the computation of a reduced set of eigenmodes are provided for fast evaluation of magnetization frequency response and absorption spectra as a function of damping and ac field. We present both finite-difference and finite-element implementations and demonstrate their effectiveness on a test case. These techniques open the possibility to study generic magnonic systems discretized with several hundred thousands (or even millions) of computational cells in a reasonably short time.

1.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
, “
Magnonics
,”
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
2.
R.
Hertel
,
W.
Wulfhekel
, and
J.
Kirschner
, “
Domain-wall induced phase shifts in spin waves
,”
Phys. Rev. Lett.
93
,
257202
(
2004
).
3.
A. V.
Chumak
,
P.
Kabos
,
M.
Wu
,
C.
Abert
,
C.
Adelmann
,
A. O.
Adeyeye
,
J.
Åkerman
,
F. G.
Aliev
,
A.
Anane
,
A.
Awad
,
C. H.
Back
,
A.
Barman
,
G. E. W.
Bauer
,
M.
Becherer
,
E. N.
Beginin
,
V. A. S. V.
Bittencourt
,
Y. M.
Blanter
,
P.
Bortolotti
,
I.
Boventer
,
D. A.
Bozhko
,
S. A.
Bunyaev
,
J. J.
Carmiggelt
,
R. R.
Cheenikundil
,
F.
Ciubotaru
,
S.
Cotofana
,
G.
Csaba
,
O. V.
Dobrovolskiy
,
C.
Dubs
,
M.
Elyasi
,
K. G.
Fripp
,
H.
Fulara
,
I. A.
Golovchanskiy
,
C.
Gonzalez-Ballestero
,
P.
Graczyk
,
D.
Grundler
,
P.
Gruszecki
,
G.
Gubbiotti
,
K.
Guslienko
,
A.
Haldar
,
S.
Hamdioui
,
R.
Hertel
,
B.
Hillebrands
,
T.
Hioki
,
A.
Houshang
,
C.-M.
Hu
,
H.
Huebl
,
M.
Huth
,
E.
Iacocca
,
M. B.
Jungfleisch
,
G. N.
Kakazei
,
A.
Khitun
,
R.
Khymyn
,
T.
Kikkawa
,
M.
Kläui
,
O.
Klein
,
J. W.
Kłos
,
S.
Knauer
,
S.
Koraltan
,
M.
Kostylev
,
M.
Krawczyk
,
I. N.
Krivorotov
,
V. V.
Kruglyak
,
D.
Lachance-Quirion
,
S.
Ladak
,
R.
Lebrun
,
Y.
Li
,
M.
Lindner
,
R.
Macêdo
,
S.
Mayr
,
G. A.
Melkov
,
S.
Mieszczak
,
Y.
Nakamura
,
H. T.
Nembach
,
A. A.
Nikitin
,
S. A.
Nikitov
,
V.
Novosad
,
J. A.
Otálora
,
Y.
Otani
,
A.
Papp
,
B.
Pigeau
,
P.
Pirro
,
W.
Porod
,
F.
Porrati
,
H.
Qin
,
B.
Rana
,
T.
Reimann
,
F.
Riente
,
O.
Romero-Isart
,
A.
Ross
,
A. V.
Sadovnikov
,
A. R.
Safin
,
E.
Saitoh
,
G.
Schmidt
,
H.
Schultheiss
,
K.
Schultheiss
,
A. A.
Serga
,
S.
Sharma
,
J. M.
Shaw
,
D.
Suess
,
O.
Surzhenko
,
K.
Szulc
,
T.
Taniguchi
,
M.
Urbánek
,
K.
Usami
,
A. B.
Ustinov
,
T.
van der Sar
,
S.
van Dijken
,
V. I.
Vasyuchka
,
R.
Verba
,
S. V.
Kusminskiy
,
Q.
Wang
,
M.
Weides
,
M.
Weiler
,
S.
Wintz
,
S. P.
Wolski
, and
X.
Zhang
, “
Advances in magnetics—Roadmap on spin-wave computing
,”
IEEE Trans. Magn.
58
,
1
72
(
2022
).
4.
L. R.
Walker
, “
Magnetostatic modes in ferromagnetic resonance
,”
Phys. Rev.
105
,
390
399
(
1957
).
5.
A.
Aharoni
, “
Exchange resonance modes in a ferromagnetic sphere
,”
J. Appl. Phys.
69
,
7762
7764
(
1991
).
6.
W. F.
Brown
,
Micromagnetics
(
Interscience Publishers
,
1963
).
7.
R. E.
Arias
and
D. L.
Mills
, “
Dipole-exchange spin waves in perpendicularly magnetized discs: Role of the Oersted field
,”
Phys. Rev. B
75
,
214404
(
2007
).
8.
A.
Baker
,
M.
Beg
,
G.
Ashton
,
M.
Albert
,
D.
Chernyshenko
,
W.
Wang
,
S.
Zhang
,
M.-A.
Bisotti
,
M.
Franchin
,
C. L.
Hu
,
R.
Stamps
,
T.
Hesjedal
, and
H.
Fangohr
, “
Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations
,”
J. Magn. Magn. Mater.
421
,
428
439
(
2017
).
9.
R. D.
McMichael
and
M. D.
Stiles
, “
Magnetic normal modes of nanoelements
,”
J. Appl. Phys.
97
,
10J901
(
2005
).
10.
M.
Yan
,
R.
Hertel
, and
C.
Schneider
, “
Calculations of three-dimensional magnetic normal modes in mesoscopic permalloy prisms with vortex structure
,”
Phys. Rev. B
76
,
094407
(
2007
).
11.
M.
Dvornik
,
Y.
Au
, and
V. V.
Kruglyak
, “Micromagnetic simulations in magnonics,” in Magnonics: From Fundamentals to Applications, Topics in Applied Physics, edited by S. O. Demokritov and A. N. Slavin (Springer, Berlin, 2013), pp. 101–115.
12.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
1954
).
13.
S.
Labbé
and
P. Y.
Bertin
, “
Microwave polarizability of ferrite particles with non-uniform magnetization
,”
J. Magn. Magn. Mater.
206
,
93
105
(
1999
).
14.
N.
Vukadinovic
,
M.
Labrune
,
J. B.
Youssef
,
A.
Marty
,
J. C.
Toussaint
, and
H.
Le Gall
, “
Ferromagnetic resonance spectra in a weak stripe domain structure
,”
Phys. Rev. B
65
,
054403
(
2001
).
15.
M.
Grimsditch
,
L.
Giovannini
,
F.
Montoncello
,
F.
Nizzoli
,
G. K.
Leaf
, and
H. G.
Kaper
, “
Magnetic normal modes in ferromagnetic nanoparticles: A dynamical matrix approach
,”
Phys. Rev. B
70
,
054409
(
2004
).
16.
K.
Rivkin
,
W.
Saslow
,
L. E.
De Long
, and
J. B.
Ketterson
, “
Dynamic magnetic response of infinite arrays of ferromagnetic particles
,”
Phys. Rev. B
75
,
174408
(
2007
).
17.
M.
d’Aquino
,
C.
Serpico
,
G.
Miano
, and
C.
Forestiere
, “
A novel formulation for the numerical computation of magnetization modes in complex micromagnetic systems
,”
J. Comput. Phys.
228
,
6130
6149
(
2009
).
18.
M.
d’Aquino
,
C.
Serpico
,
G.
Miano
, and
G.
Bertotti
, “
Computation of resonant modes and frequencies for saturated ferromagnetic nanoparticles
,”
IEEE Trans. Magn.
44
,
3141
3144
(
2008
).
19.
C.
Forestiere
,
M.
d’Aquino
,
G.
Miano
, and
C.
Serpico
, “
Finite element computations of resonant modes for small magnetic particles
,”
J. Appl. Phys.
105
,
07D312
(
2009
).
20.
F.
Bruckner
,
M.
d’Aquino
,
C.
Serpico
,
C.
Abert
,
C.
Vogler
, and
D.
Suess
, “
Large scale finite-element simulation of micromagnetic thermal noise
,”
J. Magn. Magn. Mater.
475
,
408
414
(
2019
).
21.
S.
Perna
,
F.
Bruckner
,
C.
Serpico
,
D.
Suess
, and
M.
d’Aquino
, “
Computational micromagnetics based on normal modes: Bridging the gap between macrospin and full spatial discretization
,”
J. Magn. Magn. Mater.
546
,
168683
(
2022
).
22.
R. F.
Harrington
,
Field Computation by Moment Methods
(
Macmillan
,
1968
).
23.
W.
Hackbusch
,
Hierarchical Matrices: Algorithms and Analysis
, 1st ed. (
Springer
,
New York
,
2015
).
24.
S.
Yuan
and
H.
Bertram
, “
Fast adaptive algorithms for micromagnetics
,”
IEEE Trans. Magn.
28
,
2031
2036
(
1992
).
25.
D. R.
Fredkin
and
T. R.
Koehler
, “
Hybrid method for computing demagnetizing fields
,”
IEEE Trans. Magn.
26
,
415
417
(
1990
).
26.
R.
Hertel
,
S.
Christophersen
, and
S.
Börm
, “
Large-scale magnetostatic field calculation in finite element micromagnetics with H2-matrices
,”
J. Magn. Magn. Mater.
477
,
118
123
(
2019
).
27.
R. B.
Lehoucq
,
D. C.
Sorensen
, and
C.
Yang
,
ARPACK Users’ Guide, Software, Environments, and Tools
(
Society for Industrial and Applied Mathematics
,
1998
).
28.
M.
d’Aquino
, “Magnetization geometrical integration code,” see http://wpage.unina.it/mdaquino/index_file/MaGICo.html.
29.
M.
d’Aquino
,
C.
Serpico
, and
G.
Miano
, “
Geometrical integration of Landau–Lifshitz–Gilbert equation based on the mid-point rule
,”
J. Comput. Phys.
209
,
730
753
(
2005
).
30.
B.
Stroustrup
,
The C++ Programming Language
, 3rd ed. (
Addison-Wesley
,
1997
).
31.
D.
Ritchie
and
B.
Kernighan
,
The C Programming Language
(
Bell Laboratories
,
1988
).
32.
J.
Nickolls
,
I.
Buck
,
M.
Garland
, and
K.
Skadron
, “
Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for?
,”
Queue
6
,
40
53
(
2008
).
33.
G.
Gubbiotti
,
S.
Tacchi
,
M.
Madami
,
G.
Carlotti
,
A. O.
Adeyeye
, and
M.
Kostylev
, “
Brillouin light scattering studies of planar metallic magnonic crystals
,”
J. Phys. D: Appl. Phys.
43
,
264003
(
2010
).
34.
We have recently become aware that a preprint, posted on the arXiv server after the submission of this article, describes a similar approach.40 
35.
A. H.
Baker
,
E. R.
Jessup
, and
T.
Manteuffel
, “
A technique for accelerating the convergence of restarted GMRES
,”
SIAM J. Matrix Anal. Appl.
26
,
962
984
(
2005
).
36.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in python
,”
Nat. Methods
17
,
261
272
(
2020
).
37.
N.
Vukadinovic
,
O.
Vacus
,
M.
Labrune
,
O.
Acher
, and
D.
Pain
, “
Magnetic excitations in a weak-stripe-domain structure: A 2D dynamic micromagnetic approach
,”
Phys. Rev. Lett.
85
,
2817
2820
(
2000
).
38.
O.
Dmytriiev
,
M.
Dvornik
,
R. V.
Mikhaylovskiy
,
M.
Franchin
,
H.
Fangohr
,
L.
Giovannini
,
F.
Montoncello
,
D. V.
Berkov
,
E. K.
Semenova
,
N. L.
Gorn
,
A.
Prabhakar
, and
V. V.
Kruglyak
, “
Calculation of high-frequency permeability of magnonic metamaterials beyond the macrospin approximation
,”
Phys. Rev. B
86
,
104405
(
2012
).
39.
R.
Cheenikundil
,
J.
Bauer
,
M.
Goharyan
,
M.
d’Aquino
, and
R.
Hertel
, “
High-frequency modes in a magnetic buckyball nanoarchitecture
,”
APL Mater.
10
,
081106
(
2022
).
40.
Z.
Lin
and
V.
Lomakin
, “Linearized frequency domain Landau-Lifshitz-Gilbert equation formulation,” arXiv:2210.14525 (2022).
You do not currently have access to this content.