The results of experimental research on the acoustic and electrical characteristics of underwater spark discharges facilitated by a preliminary discharge are presented. The latter was produced through the application of a short duration high-voltage pulse formed by a Marx generator. The application of this pulse lead to the formation of a low-density region in the form of a streamer which transformed to an oscillating vapor cavity. It was shown that this method provided a breakdown of a significantly increased interelectrode gap for the same charging voltage of the main capacitor and allowed the generation of stronger shocks. The temporal development of transient discharges in a long gap and the relationships between the hydrodynamic and electrical parameters of such discharges are reported and analyzed.

1.
P.
Lukes
,
P.
Sunka
,
P.
Hoffer
,
V.
Stelmashuk
,
P.
Pouckova
,
M.
Zadinova
,
J.
Zeman
,
L.
Dibdiak
,
H.
Kolarova
,
K.
Tomankova
,
S.
Binder
, and
J.
Benes
, “
Focused tandem shocks in water and their potential application in cancer treatment
,”
Shock Waves
24
(
1
),
51
57
(
2014
).
2.
K.
Lee
,
K. J.
Chung
,
Y. S.
Hwang
, and
C. Y.
Kim
, “
Underwater spark discharge with long transmission line for cleaning horizontal wells
,”
J. Appl. Phys.
121
,
243302
(
2017
).
3.
F.
Ren
,
L.
Ge
,
V.
Stelmashuk
,
T. E.
Thomas Rufford
,
H.
Xing
, and
V.
Rudolph
, “
Characterisation and evaluation of shockwave generation in water conditions for coal fracturing
,”
J. Nat. Gas Sci. Eng.
66
,
255
264
(
2019
).
4.
S.
Kumar
,
R.
Singh
,
T.
Singh
, and
B.
Sethi
, “
Surface modification by electrical discharge machining: A review
,”
J. Mater. Process. Technol.
209
(
8
),
3675
3687
(
2009
).
5.
V.
Stelmashuk
and
P.
Hoffer
, “
Shock waves generated by an electrical discharge on composite electrode immersed in water With different conductivities
,”
IEEE Trans. Plasma Sci.
40
,
1907
1912
(
2012
).
6.
Y.
Sun
,
I. V.
Timoshkin
,
M. J.
Given
,
M. P.
Wilson
,
T.
Wang
,
S. J.
MacGregor
, and
N.
Bonifaci
, “
Acoustic impulses generated by air-bubble stimulated underwater spark discharges
,”
IEEE Trans. Dielectr. Electr. Insul.
25
,
1915
1923
(
2018
).
7.
S. W.
Liu
,
L.
Yi
,
Z. Y.
Li
,
X. D.
Li
,
G.
Zhou
,
H.
Li
, and
F.
Lin
, “
Effect of electrical breakdown modes on shock wave intensity in water
,”
IEEE Trans. Dielectr. Electr. Insul.
25
,
1679
1687
(
2018
).
8.
S. M.
Korobeinikov
,
A. V.
Melekhov
, and
A. S.
Besov
, “
Breakdown initiation in water with the aid of bubbles
,”
High Temp.
40
,
652
659
(
2002
).
9.
V.
Stelmashuk
, “
Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration
,”
Phys. Plasmas
21
,
010703
(
2014
).
10.
V.
Stelmashuk
, “
Time-resolved processes in a pulsed electrical discharge in water generated with shock wave assistance in a plate-to-plate configuration
,”
J. Phys. D: Appl. Phys.
47
,
495204
(
2014
). (7 pp).
11.
V.
Stelmashuk
, “
Time evolution of a high-voltage discharge in water With shock wave assistance in a Pin to Pin geometry
,”
IEEE Trans. Plasma Sci.
42
,
2614
2615
(
2014
).
12.
V.
Stelmashuk
, “
Time evolution of a high-voltage discharge in water With shock wave assistance in a plate-to-plate geometry
,”
IEEE Trans. Plasma Sci.
42
,
2626
2627
(
2014
).
13.
V.
Stelmashuk
, “
Microsecond electrical discharge in water in plate-to-plate configuration with nitrogen bubble injection
,”
IEEE Trans. Plasma Sci.
44
,
702
707
(
2016
).
14.
K.
Lee
,
K.
Chung
, and
Y. S.
Hwang
, “
Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges
,”
Appl. Phys. Lett.
112
,
134101
(
2018
).
15.
H.
Ham
and
J. J.
Yoh
, “
Electronegative microchannel guided streamer propagation for in-liquid spark breakdown applications
,”
Appl. Phys. Lett.
118
,
103905
(
2021
).
16.
A. P. J.
van Deursen
and
V.
Stelmashuk
, “
Inductive sensor for lightning current measurement, fitted in aircraft windows - part I: Analysis for a circular window
,”
IEEE Sens. J.
11
,
199
204
(
2011
).
17.
R. P.
Joshi
,
J. F.
Kolb
,
S.
Xiao
, and
K. H.
Schoenbach
, “
Aspects of plasma in water: Streamer physics and applications
,”
Plasma Processes Polym.
6
,
763
777
(
2009
).
18.
V.
Stelmashuk
and
J.
Schmidt
, “
An empirical resistance equation for the modelling of corona discharge in saline water
,”
Plasma Source Sci. Technol.
31
,
015011
(
2022
). (9 pp).
19.
K. A.
Naugol’nykh
and
N. A.
Roy
,
Spark Discharges in Water
(
Nauka
,
Moscow
,
1971
). translation: Foreign Technology Division, Wright-Patterson AFB OH, 1974, 1971.
20.
P.
Bruggeman
and
C.
Leys
, “
Non-thermal plasmas in and in contact with liquids
,”
J. Phys. D: Appl. Phys.
42
,
053001
(
2009
). (28 pp).
21.
S.
Gershman
and
A.
Belkind
, “
Time-resolved processes in a pulsed electrical discharge in argon bubbles in water
,”
The European Physical Journal D
60
,
661
672
(
2010
).
22.
V.
Stelmashuk
,
P.
Hoffer
,
K.
Kolacek
, and
J.
Straus
, “
Experimental study of spark channel expansion in water
,”
IEEE Trans. Plasma Sci.
48
(
2
),
491
499
(
2020
).
23.
S.
Lee
,
K.
Chung
, and
Y. S.
Hwang
, “
Correlation of the peak pressure generated by an underwater spark discharge with energy absorption in a spark channel
,”
J. Korean Phys. Soc.
66
(
12
),
1845
1851
(
2015
).
24.
V. M.
Kosenkov
and
V. M.
Bychkov
, “
Mathematical modeling of transient processes in the discharge circuit and chamber of an electrohydraulic installation
,”
Surf. Eng. Appl. Electrochem.
51
,
167
173
(
2015
).
25.
I.
Timoshkin
,
R.
Fouracre
,
M.
Given
, and
S.
MacGregor
, “
Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges
,”
J. Phys. D: Appl. Phys.
39
,
4808
4817
(
2006
).
26.
V.
Stelmashuk
,
V.
Prukner
,
K.
Kolacek
,
A.
Tuholukov
,
P.
Hoffer
,
J.
Straus
,
A.
Frolov
, and
V.
Jirasek
, “
Optical emission spectroscopy of underwater spark generated by pulse high-voltage discharge with Gas bubble assistant
,”
Processes
10
,
1474
(
2022
).
You do not currently have access to this content.