The toolbox to study the Universe grew on 14 September 2015 when the LIGO–Virgo collaboration heard a signal from two colliding black holes between 30 and 250 Hz. Since then, many more gravitational waves have been detected as detectors continue to increase sensitivity. However, the current and future interferometric detectors will never be able to detect gravitational waves below a few Hz due to oceanic activity on Earth. An interferometric space mission, the laser interferometer space antenna, will operate between 1 mHz and 0.1 Hz, leaving a gap in the decihertz band. To detect gravitational-wave signals also between 0.1 and 1 Hz, the Lunar Gravitational-wave Antenna will use an array of seismic stations. The seismic array will be deployed in a permanently shadowed crater on the lunar south pole, which provides stable ambient temperatures below 40 K. A cryogenic superconducting inertial sensor is under development that aims for fm/ Hz sensitivity or better down to several hundred mHz, and thermal noise limited below that value. Given the 10 6 m size of the Moon, strain sensitivities below 10 20 1/ Hz can be achieved. The additional cooling is proposed depending on the used superconductor technology. The inertial sensors in the seismic stations aim to make a differential measurement between the elastic response of the Moon and the inertial sensor proof-mass motion induced by gravitational waves. Here, we describe the current state of research toward the inertial sensor, its applications, and additional auxiliary technologies in the payload of the lunar gravitational-wave detection mission.

1.
B. P.
Abbott
et al., “
Observation of gravitational waves from a binary black hole merger
,”
Phys. Rev. Lett.
116
,
061102
(
2016
).
2.
B. P.
Abbott
et al., “
Observation of gravitational waves from a binary neutron star inspiral
,”
Phys. Rev. Lett.
119
,
161101
(
2017
).
3.
R.
Abbott
et al., “GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run,” arXiv:2111.03606 (accepted ApJ) (2021).
4.
J.
Aasi
et al., “
Advanced LIGO
,”
Class. Quant. Grav.
32
,
074001
(
2015
).
5.
F.
Acernese
et al., “
Advanced virgo: A second-generation interferometric gravitational wave detector
,”
Class. Quant. Grav.
32
(
2
),
024001
(
2015
).
6.
T.
Akutsu
et al., “
Overview of KAGRA: Detector design and construction history
,”
Prog. Theor. Exp. Phys.
2021
(
5
),
05A101
(
2020
).
7.
J.
Harms
et al., “
Lunar Gravitational-wave Antenna
,”
Astrophys. J.
910
(
1
),
1
(
2021
).
8.
J.
Harms
, “
Seismic background limitation of Lunar Gravitational-wave detectors
,”
Phys. Rev. Lett.
129
,
071102
(
2022
).
9.
P.
Gläser
,
J.
Oberst
,
G. A.
Neumann
,
E.
Mazarico
,
E. J.
Speyerer
, and
M. S.
Robinson
, “
Illumination conditions at the Lunar poles: Implications for future exploration
,”
Planet. Space Sci.
162
,
170
178
(
2018
). , Lunar Reconnaissance Orbiter—Seven Years of Exploration and Discovery.
10.
P.
Lognonné
,
M. L.
Feuvre
,
C. L.
Johnson
, and
R. C.
Weber
, “
Moon meteoritic seismic hum: Steady state prediction
,”
J. Geophys. Res.: Planets
114
(
E12
),
21
(
2009
).
11.
F.
Badaracco
,
J.
Harms
,
A.
Bertolini
,
T.
Bulik
,
I.
Fiori
,
B.
Idzkowski
,
A.
Kutynia
,
K.
Nikliborc
,
F.
Paoletti
,
A.
Paoli
,
L.
Rei
, and
M.
Suchinski
, “
Machine learning for gravitational-wave detection: Surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at virgo
,”
Classical Quantum Gravity
37
(
19
),
195016
(
2020
).
12.
See https://www.esa.int/ESA_Multimedia/Images/1998/01/South_Pole_region_of_the_Moon_seen_by_Clementine2 for “South Pole Region of the Moon Seen by Clementine, European Space Agency” (last accessed January 31, 2023).
13.
F.
Duennebier
and
G. H.
Sutton
, “
Thermal moonquakes
,”
J. Geophys. Res.
79
(
29
),
4351
4363
, https://doi.org/10.1029/JB079i029p04351 (
1974
).
14.
S. C.
Stähler
,
R.
Widmer-Schnidrig
,
J.-R.
Scholz
,
M.
van Driel
,
A.
Mittelholz
,
K.
Hurst
,
C. L.
Johnson
,
M. T.
Lemmon
,
P.
Lognonné
,
R. D.
Lorenz
,
N. T.
Müller
,
L.
Pou
,
A.
Spiga
,
D.
Banfield
,
S.
Ceylan
,
C.
Charalambous
,
J.
Clinton
,
D.
Giardini
,
F.
Nimmo
,
M.
Panning
,
W.
Zürn
, and
W. B.
Banerdt
, “
Geophysical observations of phobos transits by insight
,”
Geophys. Res. Lett.
47
(
19
),
e2020GL089099
, https://doi.org/10.1029/2020GL089099 (
2020
).
15.
P.
Gläser
,
A.
Sanin
,
J.-P.
Williams
,
I.
Mitrofanov
, and
J.
Oberst
, “
Temperatures near the Lunar poles and their correlation with hydrogen predicted by lend
,”
J. Geophys. Res. Planets
126
(
9
),
e2020JE006598
, https://doi.org/10.1029/2020JE006598 (
2021
).
16.
A.
Bertolini
,
R.
DeSalvo
,
F.
Fidecaro
,
M.
Francesconi
,
S.
Marka
,
V.
Sannibale
,
D.
Simonetti
,
A.
Takamori
, and
H.
Tariq
, “
Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems
,”
Nucl. Instrum. Methods Phys. Res. A
556
(
2
),
616
623
(
2006
).
17.
J. V.
van Heijningen
,
A.
Bertolini
, and
J. F. J.
van den Brand
, “A novel interferometrically read out inertial sensor for future gravitational wave detectors,” in IEEE SAS Proceedings (Institute of Electrical and Electronics Engineers, 2018), pp. 76–80.
18.
M. B.
Gray
,
D. E.
McClelland
,
M.
Barton
, and
S.
Kawamura
, “
A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer
,”
Opt. Quantum Electron.
31
(
5/7
),
571
582
(
1999
).
19.
J. V.
van Heijningen
, “Low-frequency performance improvement of seismic attenuation systems and vibration sensors for next generation gravitational wave detectors,” Ph.D. thesis (Vrije Universiteit, 2018), https://www.nikhef.nl/pub/services/biblio/theses_pdf/thesis_J_van_Heijningen.pdf.
20.
P. R.
Saulson
, “
Thermal noise in mechanical experiments
,”
Phys. Rev. D
42
,
2437
2445
(
1990
).
21.
E. C.
Ferreira
,
F.
Bocchese
,
F.
Badaracco
,
J. V.
van Heijningen
,
S.
Lucas
, and
A.
Perali
, “
Superconducting thin film spiral coils as low-noise cryogenic actuators
,”
J. Phys.: Conf. Ser.
2156
(
1
),
012080
(
2021
).
22.
J. V.
van Heijningen
,
A.
Gatti
,
E. C.
Ferreira
,
F.
Bocchese
,
F.
Badaracco
,
S.
Lucas
,
A.
Perali
, and
F.
Tavernier
, “
A cryogenic inertial sensor for terrestrial and Lunar Gravitational-wave detection
,”
Nucl. Instrum. Methods Phys. Res. A
1041
,
167231
(
2022
).
23.
J. V.
van Heijningen
, “
A fifty-fold improvement of thermal noise limited inertial sensitivity by operating at cryogenic temperatures
,”
J. Instrum.
15
(
06
),
P06034
(
2020
).
24.
J.
Watchi
,
S.
Cooper
,
B.
Ding
,
C. M.
Mow-Lowry
, and
C.
Collette
, “
Contributed review: A review of compact interferometers
,”
Rev. Sci. Instrum.
89
(
12
),
121501
(
2018
).
25.
T.
Eckhardt
and
O.
Gerberding
, “
Noise limitations in multi-fringe readout of laser interferometers and resonators
,”
Metrology
2
(
1
),
98
113
(
2022
).
26.
M.
Armano
,
H.
Audley
,
J.
Baird
,
P.
Binetruy
,
M.
Born
,
D.
Bortoluzzi
,
N.
Brandt
,
E.
Castelli
,
A.
Cavalleri
,
A.
Cesarini
,
A. M.
Cruise
,
K.
Danzmann
,
M.
de Deus Silva
,
I.
Diepholz
,
G.
Dixon
,
R.
Dolesi
,
L.
Ferraioli
,
V.
Ferroni
,
E. D.
Fitzsimons
,
R.
Flatscher
,
M.
Freschi
,
A.
García
,
R.
Gerndt
,
L.
Gesa
,
D.
Giardini
,
F.
Gibert
,
R.
Giusteri
,
C.
Grimani
,
J.
Grzymisch
,
F.
Guzman
,
I.
Harrison
,
M.-S.
Hartig
,
G.
Heinzel
,
M.
Hewitson
,
D.
Hollington
,
D.
Hoyland
,
M.
Hueller
,
H.
Inchauspé
,
O.
Jennrich
,
P.
Jetzer
,
U.
Johann
,
B.
Johlander
,
N.
Karnesis
,
B.
Kaune
,
C. J.
Killow
,
N.
Korsakova
,
J. A.
Lobo
,
L.
Liu
,
J. P.
López-Zaragoza
,
R.
Maarschalkerweerd
,
D.
Mance
,
V.
Martín
,
L.
Martin-Polo
,
F.
Martin-Porqueras
,
J.
Martino
,
P. W.
McNamara
,
J.
Mendes
,
L.
Mendes
,
N.
Meshksar
,
A.
Monsky
,
M.
Nofrarias
,
S.
Paczkowski
,
M.
Perreur-Lloyd
,
A.
Petiteau
,
P.
Pivato
,
E.
Plagnol
,
J.
Ramos-Castro
,
J.
Reiche
,
F.
Rivas
,
D. I.
Robertson
,
G.
Russano
,
J.
Sanjuan
,
J.
Slutsky
,
C. F.
Sopuerta
,
F.
Steier
,
T.
Sumner
,
D.
Texier
,
J. I.
Thorpe
,
D.
Vetrugno
,
S.
Vitale
,
V.
Wand
,
G.
Wanner
,
H.
Ward
,
P. J.
Wass
,
W. J.
Weber
,
L.
Wissel
,
A.
Wittchen
, and
P.
Zweifel
, “
Sensor noise in LISA pathfinder: In-flight performance of the optical test mass readout
,”
Phys. Rev. Lett.
126
(
13
),
131103
(
2021
).
27.
T. S.
Schwarze
,
G.
Fernández Barranco
,
D.
Penkert
,
M.
Kaufer
,
O.
Gerberding
, and
G.
Heinzel
, “
Picometer-stable hexagonal optical bench to verify LISA phase extraction linearity and precision
,”
Phys. Rev. Lett.
122
(
8
),
081104
(
2019
).
28.
M.
Armano
,
H.
Audley
,
J.
Baird
,
P.
Binetruy
,
M.
Born
,
D.
Bortoluzzi
,
E.
Castelli
,
A.
Cavalleri
,
A.
Cesarini
,
A. M.
Cruise
,
K.
Danzmann
,
M.
de Deus Silva
,
I.
Diepholz
,
G.
Dixon
,
R.
Dolesi
,
L.
Ferraioli
,
V.
Ferroni
,
E. D.
Fitzsimons
,
M.
Freschi
,
L.
Gesa
,
F.
Gibert
,
D.
Giardini
,
R.
Giusteri
,
C.
Grimani
,
J.
Grzymisch
,
I.
Harrison
,
G.
Heinzel
,
M.
Hewitson
,
D.
Hollington
,
D.
Hoyland
,
M.
Hueller
,
H.
Inchauspé
,
O.
Jennrich
,
P.
Jetzer
,
N.
Karnesis
,
B.
Kaune
,
N.
Korsakova
,
C. J.
Killow
,
J. A.
Lobo
,
I.
Lloro
,
L.
Liu
,
J. P.
López-Zaragoza
,
R.
Maarschalkerweerd
,
D.
Mance
,
C.
Mansanet
,
V.
Martín
,
L.
Martin-Polo
,
J.
Martino
,
F.
Martin-Porqueras
,
I.
Mateos
,
P. W.
McNamara
,
J.
Mendes
,
L.
Mendes
,
N.
Meshksar
,
M.
Nofrarias
,
S.
Paczkowski
,
M.
Perreur-Lloyd
,
A.
Petiteau
,
P.
Pivato
,
E.
Plagnol
,
J.
Ramos-Castro
,
J.
Reiche
,
D. I.
Robertson
,
F.
Rivas
,
G.
Russano
,
J.
Sanjuán
,
J.
Slutsky
,
C. F.
Sopuerta
,
T.
Sumner
,
D.
Texier
,
J. I.
Thorpe
,
C.
Trenkel
,
D.
Vetrugno
,
S.
Vitale
,
G.
Wanner
,
H.
Ward
,
P. J.
Wass
,
D.
Wealthy
,
W. J.
Weber
,
L.
Wissel
,
A.
Wittchen
, and
P.
Zweifel
, “
Temperature stability in the sub-milliHertz band with LISA pathfinder
,”
Mon. Not. R. Astron. Soc.
486
(
3
),
3368
3379
(
2019
).
29.
S. J.
Cooper
,
C. J.
Collins
,
L.
Prokhorov
,
J.
Warner
,
D.
Hoyland
, and
C. M.
Mow-Lowry
, “Interferometric sensing of a commercial geophone,” arXiv:2109.03147 [astro-ph, physics:physics] (2021).
30.
S. J.
Cooper
,
C. J.
Collins
,
A. C.
Green
,
D.
Hoyland
,
C. C.
Speake
,
A.
Freise
, and
C. M.
Mow-Lowry
, “
A compact, large-range interferometer for precision measurement and inertial sensing
,”
Classical Quantum Gravity
35
(
9
),
095007
(
2018
).
31.
O.
Gerberding
and
K.-S.
Isleif
, “
Ghost beam suppression in deep frequency modulation interferometry for compact on-axis optical heads
,”
Sensors
21
(
5
),
1708
(
2021
).
32.
F. G.
Cervantes
,
L.
Kumanchik
,
J.
Pratt
, and
J. M.
Taylor
, “
High sensitivity optomechanical reference accelerometer over 10 kHz
,”
Appl. Phys. Lett.
104
(
22
),
221111
(
2014
).
33.
O.
Gerberding
, “
Deep frequency modulation interferometry
,”
Opt. Express
23
(
11
),
14753
14762
(
2015
).
34.
J.
Eichholz
,
D. B.
Tanner
, and
G.
Mueller
, “
Heterodyne laser frequency stabilization for long baseline optical interferometry in space-based gravitational wave detectors
,”
Phys. Rev. D
92
(
2
),
022004
(
2015
).
35.
O.
Gerberding
,
B.
Sheard
,
I.
Bykov
,
J.
Kullmann
,
J. J. E.
Delgado
,
K.
Danzmann
, and
G.
Heinzel
, “
Phasemeter core for intersatellite laser heterodyne interferometry: Modelling, simulations and experiments
,”
Classical Quantum Gravity
30
(
23
),
235029
(
2013
).
36.
N.
Gürlebeck
,
L.
Wörner
,
T.
Schuldt
,
K.
Döringshoff
,
K.
Gaul
,
D.
Gerardi
,
A.
Grenzebach
,
N.
Jha
,
E.
Kovalchuk
,
A.
Resch
,
T.
Wendrich
,
R.
Berger
,
S.
Herrmann
,
U.
Johann
,
M.
Krutzik
,
A.
Peters
,
E. M.
Rasel
, and
C.
Braxmaier
, “
BOOST: A satellite mission to test lorentz invariance using high-performance optical frequency references
,”
Phys. Rev. D
97
,
124051
(
2018
).
37.
L.
Wissel
,
A.
Wittchen
,
T. S.
Schwarze
,
M.
Hewitson
,
G.
Heinzel
, and
H.
Halloin
, “
Relative-intensity-noise coupling in heterodyne interferometers
,”
Phys. Rev. Appl.
17
(
2
),
024025
(
2022
).
38.
M.-S.
Hartig
,
S.
Schuster
, and
G.
Wanner
, “
Geometric tilt-to-length coupling in precision interferometry: Mechanisms and analytical descriptions
,”
J. Opt.
24
(
6
),
065601
(
2022
).
39.
H. J.
Paik
, “
Superconducting tunable-diaphragm transducer for sensitive acceleration measurements
,”
J. Appl. Phys.
47
(
3
),
1168
1178
(
1976
).
40.
H. J. Paik and C. Collins, personal communication (2022).
41.
See http://www.npphotonics.com/rock-module for “The Rock OEM Module” (last accessed January 2, 2022).
42.
H. J.
Paik
and
K. Y.
Venkateswara
, “
Gravitational wave detection on the Moon and the moons of Mars
,”
Adv. Space Res.
43
(
1
),
167
170
(
2009
).
43.
P.
Falferi
,
M.
Bonaldi
,
M.
Cerdonio
,
R.
Mezzena
,
G. A.
Prodi
,
A.
Vinante
, and
S.
Vitale
, “
10 superconducting quantum interference device amplifier for acoustic gravitational wave detectors
,”
Appl. Phys. Lett.
93
(
17
),
172506
(
2008
).
44.
C.
Schwarz
,
D.
Heinert
,
M.
Hudl
,
R.
Neubert
,
M.
Thürk
,
S.
Nietzsche
,
W.
Vodel
,
P.
Seidel
,
R.
Nawrodt
,
A.
Zimmer
,
T.
Koettig
, and
A.
Tünnermann
, “
High mechanical Q-factor measurements on silicon bulk samples
,”
J. Phys.: Conf. Ser.
122
(
1
),
012008
(
2008
).
45.
A.-M. A.
van Veggel
and
C. J.
Killow
, “
Hydroxide catalysis bonding for astronomical instruments
,”
Adv. Opt. Technol.
3
(
3
),
293
307
(
2014
).
46.
D.
Barret
,
T. L.
Trong
,
J.-W.
den Herder
,
L.
Piro
,
X.
Barcons
,
J.
Huovelin
,
R.
Kelley
,
J.
Miguel Mas-Hesse
,
K.
Mitsuda
,
S.
Paltani
,
G.
Rauw
,
A.
Rożanska
,
J.
Wilms
,
M.
Barbera
,
E.
Bozzo
,
M.
Teresa Ceballos
,
I.
Charles
,
A.
Decourchelle
,
R.
den Hartog
,
J.-M.
Duval
,
F.
Fiore
,
F.
Gatti
,
A.
Goldwurm
,
B.
Jackson
,
P.
Jonker
,
C.
Kilbourne
,
C.
Macculi
,
M.
Mendez
,
S.
Molendi
,
P.
Orleanski
,
F.
Pajot
,
E.
Pointecouteau
,
F.
Porter
,
G. W.
Pratt
,
D.
Prêle
,
L.
Ravera
,
E.
Renotte
,
J.
Schaye
,
K.
Shinozaki
,
L.
Valenziano
,
J.
Vink
,
N.
Webb
,
N.
Yamasaki
,
F.
Delcelier-Douchin
,
M. L.
Du
,
J.-M.
Mesnager
,
A.
Pradines
,
G.
Branduardi-Raymont
,
M.
Dadina
,
A.
Finoguenov
,
Y.
Fukazawa
,
A.
Janiuk
,
J.
Miller
,
Y.
Nazé
,
F.
Nicastro
,
S.
Sciortino
,
J. M.
Torrejon
,
H.
Geoffray
,
I.
Hernandez
,
L.
Luno
,
P.
Peille
,
J.
André
,
C.
Daniel
,
C.
Etcheverry
,
E.
Gloaguen
,
J.
Hassin
,
G.
Hervet
,
I.
Maussang
,
J.
Moueza
,
A.
Paillet
,
B.
Vella
,
G. C.
Garrido
,
J.-C.
Damery
,
C.
Panem
,
J.
Panh
,
S.
Bandler
,
J.-M.
Biffi
,
K.
Boyce
,
A.
Clénet
,
M.
DiPirro
,
P.
Jamotton
,
S.
Lotti
,
D.
Schwander
,
S.
Smith
,
B.-J.
van Leeuwen
,
H.
van Weers
,
T.
Brand
,
B.
Cobo
,
T.
Dauser
,
J.
de Plaa
, and
E.
Cucchetti
, “
The athena x-ray integral field unit (X-IFU)
,”
Proc. SPIE
9905
,
99052F
(
2016
).
47.
J. F.
Burger
,
H. J. M.
ter Brake
,
H.
Rogalla
, and
M.
Linder
, “
Vibration-free 5 K sorption cooler for ESA’s Darwin mission
,”
Cryogenics
42
(
2
),
97
108
(
2002
).
48.
H. J.
Holland
,
R. J.
Meijer
,
T. T.
Veenstra
,
G. C. F.
Venhorst
,
D.
Lozano-Castelló
,
M.
Coesel
,
A.
Sirbi
,
J. F.
Burger
, and
H. J. M.
ter Brake
, “
Long-life vibration-free 4.5 K sorption cooler for space applications
,”
Rev. Sci. Instrum.
78
(
6
),
065102
(
2007
).
49.
D. J.
Doornink
,
J. F.
Burger
, and
H. J. M.
ter Brake
, “
Sorption cooling: A valid extension to passive cooling
,”
Cryogenics
48
(
5
),
274
279
(
2008
), Special Issue: 2007 Space Cryogenics Workshop.
50.
G. F. M.
Wiegerinck
,
J. F.
Burger
,
H. J.
Holland
,
E.
Hondebrink
,
H. J. M.
ter Brake
, and
H.
Rogalla
, “
A sorption compressor with a single sorber bed for use with a Linde–Hampson cold stage
,”
Cryogenics
46
(
1
),
9
20
(
2006
).
51.
G. F. M.
Wiegerinck
,
H. J. M.
ter Brake
,
J. F.
Burger
,
H. J.
Holland
, and
H.
Rogalla
, “
Thermodynamic optimization of sorption-based Joule–Thomson coolers
,”
Cryogenics
47
(
3
),
143
152
(
2007
).
52.
R. J.
Meijer
,
A.
Mudaliar
,
D.
Zalewski
,
M.
Linder
,
H. J. M.
ter Brake
, and
H. J.
Holland
, “14.5 K hydrogen sorption cooler: Design and breadboard tests,” in Cryocoolers 16, Proceeding of the 16th Cryocooler Conference (International Cryocooler Conference, Inc., Boulder, CO, 2011), pp. 445–454.
53.
J. F.
Burger
and
H. J. M.
ter Brake
, “4 K sorption cooler,” ESA Contract No. 16810/02/NL/SFe, final report, 2007. 4KSC-RPT-UT-041.
54.
C. H.
Vermeer
,
H. J.
Holland
, and
H. J. M.
ter Brake
, “Hydrogen sorption cooler,” ESA Contract nO. 21348/07/NL/PA,” Final Report, 2013. H2SC-RPT-UT-001.
55.
G.
Morgante
,
D.
Pearson
,
F.
Melot
,
P.
Stassi
,
L.
Terenzi
,
P.
Wilson
,
B.
Hernandez
,
L.
Wade
,
A.
Gregorio
,
M.
Bersanelli
,
C.
Butler
, and
N.
Mandolesi
, “
Cryogenic characterization of the Planck sorption cooler system flight model
,”
J. Instrum.
4
(
12
),
T12016
(
2009
).
56.
P. A. R.
Ade
et al.,
(Planck Collaboration)
, “
Planck early results. II. The thermal performance of Planck
,”
A&A
536
,
A2
(
2011
).
57.
A.
Maas
et al., “Performance verification and pre-qualification of vibration-free hydrogen sorption JT cryo-cooler,” Test Evaluation Cooler Components, TN9.2 in ESA Contract No. 4000109584/13/NL/HB, 2017. CTRL-DUS-TN-00022.
58.
P.
Lognonné
,
M.
Bierwirth
,
A.
Kramer
,
P.
Delage
,
F.
Karakostas
,
S.
Kedar
,
N.
Murdoch
,
R. F.
Garcia
,
N.
Verdier
,
S.
Tillier
,
W. T.
Pike
,
K.
Hurst
,
C.
Schmelzbach
,
L.
Fayon
,
B.
Knapmeyer-Endrun
, and
W. B.
Banerdt
, “
A numerical model of the SEIS leveling system transfer matrix and resonances: Application to SEIS rotational seismology and dynamic ground interaction
,”
Space Sci. Rev.
214
(
8
),
119
(
2018
).
59.
M.
Bierwirth
,
A.
Kramer
,
M.
Eberhardt
, and
F.
IJpelaan
, “Leveling the SEIS instrument on NASA’s InSight mission to Mars,” in Proceedings of the European Space Mechanisms and Tribology Symposium (European Space Agency, 2019).
60.
P.
Lognonné
et al., “
SEIS: Insight’s seismic experiment for internal structure of Mars
,”
Space Sci. Rev.
215
,
12
(
2019
).
61.
T.
Eckhardt
and
O.
Gerberding
, “
Noise limitations in multi-fringe readout of laser interferometers and resonators
,”
Metrology
2
(
1
),
98
113
(
2022
).
62.
V.
Mangano
,
L.
Pierini
,
A.
Rezaei
,
J.-S.
Hennig
,
M.
Hennig
,
D.
Pascucci
,
A.
Allocca
,
I.
Tosta e Melo
,
V. G.
Nair
,
P.
Orban
,
A.
Sider
,
S.
Shani-Kadmiel
,
J. V.
van Heijningen
, and
S. D.
Pace
, “
Research facilities for Europe’s next generation gravitational-wave detector einstein telescope
,”
Galaxies
10
(
3
),
65
(
2022
).
63.
A.
Utina
et al., “
ETpathfinder: A cryogenic testbed for interferometric gravitational-wave detectors
,”
Classical Quantum Gravity
39
(
21
),
215008
(
2022
).
64.
A.
Sider
et al., “E-TEST prototype design report,” arXiv:2212.10083 (2022).
65.
T.
Ushiba
et al., “
Cryogenic suspension design for a kilometer-scale gravitational-wave detector
,”
Classical Quantum Gravity
38
(
8
),
085013
(
2021
).
66.
ET Steering Committee, “ET design report update,” Technical Report, 2020, https://apps.et-gw.eu/tds/?content=3&r=17245
67.
S.
Kawamura
et al., “
Current status of space gravitational wave antenna DECIGO and B-DECIGO
,”
Prog. Theor. Exper. Phys.
2021
(
5
),
05A105
(
2021
).
68.
J.
Crowder
and
N. J.
Cornish
, “
Beyond LISA: Exploring future gravitational wave missions
,”
Phys. Rev. D
72
,
083005
(
2005
).
69.
F.
Matichard
et al., “
Seismic isolation of advanced LIGO: Review of strategy, instrumentation and performance
,”
Classical Quantum Gravity
32
(
18
),
185003
(
2015
).
70.
J.
Harms
, “GEMINI: A new underground seismic-isolation facility at LNGS,” technical document, https://apps.et-gw.eu/tds/?content=3&r=18123
71.
J.
Harms
,
E. L.
Bonilla
,
M. W.
Coughlin
,
J.
Driggers
,
S. E.
Dwyer
,
D. J.
McManus
,
M. P.
Ross
,
B. J. J.
Slagmolen
, and
K.
Venkateswara
, “
Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford
,”
Phys. Rev. D
101
,
102002
(
2020
).
72.
R.
Sleeman
,
A.
van Wettum
, and
J.
Trampert
, “
Three-channel correlation analysis: A new technique to measure instrumental noise of digitizers and seismic sensors
,”
Bull. Seismol. Soc. Am.
96
(
1
),
258
271
(
2006
).
You do not currently have access to this content.