We consider the problem of analyzing spin-flip qubit gate operation in the presence of Random Telegraph Noise (RTN). Our compressive approach is the following. By using the Feynman disentangling operators method, we calculate the spin-flip probability of qubit driven by different kinds of composite pulses, e.g., Constant pulse (C-pulse), Quantum Well pulse (QW-pulse), and Barrier Potential pulse (BP-pulse) in the presence of RTN. When composite pulses and RTN act in the x-direction and z-direction respectively, we calculate the optimal time to achieve perfect spin-flip probability of qubit. We report that the highest fidelity of spin-flip qubit can be achieved by using C-pulse, followed by BP-pulse and QW-pulse. For a more general case, we have tested several pulse sequences for achieving high fidelity quantum gates, where we use the pulses acting in different directions. From the calculations, we find that high fidelity of qubit gate operation in the presence of RTN is achieved when QW-pulse, BP-pulse, and C-pulse act in the x-direction, y-direction, and z-direction, respectively. We extend our investigations for multiple QW and BP pulses while choosing the C-pulse amplitude constant in the presence of RTN. The results of calculation show that 98.5 % fidelity can be achieved throughout the course of RTN that may be beneficial for quantum error correction.

1.
M.-S.
Choi
,
C.
Bruder
, and
D.
Loss
, “
Spin-dependent Josephson current through double quantum dots and measurement of entangled electron states
,”
Phys. Rev. B
62
,
13569
(
2000
).
2.
G.
Burkard
,
D.
Loss
, and
D. P.
DiVincenzo
, “
Coupled quantum dots as quantum gates
,”
Phys. Rev. B
59
,
2070
(
1999
).
3.
X.
Hu
and
S. D.
Sarma
, “
Hilbert-space structure of a solid-state quantum computer: Two-electron states of a double-quantum-dot artificial molecule
,”
Phys. Rev. A
61
,
062301
(
2000
).
4.
T. S.
Koh
,
J. K.
Gamble
,
M.
Friesen
,
M.
Eriksson
, and
S.
Coppersmith
, “
Pulse-gated quantum-dot hybrid qubit
,”
Phys. Rev. Lett.
109
,
250503
(
2012
).
5.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
, “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
,
1959
(
2010
).
6.
S.
Prabhakar
,
J.
Raynolds
,
A.
Inomata
, and
R.
Melnik
, “
Manipulation of single electron spin in a GaAs quantum dot through the application of geometric phases: The Feynman disentangling technique
,”
Phys. Rev. B
82
,
195306
(
2010
).
7.
S.
Prabhakar
,
R.
Melnik
, and
L. L.
Bonilla
, “
Gate control of berry phase in III-V semiconductor quantum dots
,”
Phys. Rev. B
89
,
245310
(
2014
).
8.
S.
Prabhakar
,
R.
Melnik
, and
A.
Inomata
, “
Geometric spin manipulation in semiconductor quantum dots
,”
Appl. Phys. Lett.
104
,
142411
(
2014
).
9.
U.
Vool
,
S.
Shankar
,
S.
Mundhada
,
N.
Ofek
,
A.
Narla
,
K.
Sliwa
,
E.
Zalys-Geller
,
Y.
Liu
,
L.
Frunzio
,
R.
Schoelkopf
, and
S. M.
Girvin
, “
Continuous quantum nondemolition measurement of the transverse component of a qubit
,”
Phys. Rev. Lett.
117
,
133601
(
2016
).
10.
H.-K.
Lau
and
M. B.
Plenio
, “
Universal continuous-variable quantum computation without cooling
,”
Phys. Rev. A
95
,
022303
(
2017
).
11.
F.
Yoshihara
,
T.
Fuse
,
S.
Ashhab
,
K.
Kakuyanagi
,
S.
Saito
, and
K.
Semba
, “
Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime
,”
Nat. Phys.
13
,
44
(
2017
).
12.
D. J.
Clarke
,
J. D.
Sau
, and
S. D.
Sarma
, “
A practical phase gate for producing bell violations in Majorana wires
,”
Phys. Rev. X
6
,
021005
(
2016
).
13.
L.
Grünhaupt
,
M.
Spiecker
,
D.
Gusenkova
,
N.
Maleeva
,
S. T.
Skacel
,
I.
Takmakov
,
F.
Valenti
,
P.
Winkel
,
H.
Rotzinger
,
W.
Wernsdorfer
, and
A. V.
Ustinov
, “
Granular aluminium as a superconducting material for high-impedance quantum circuits
,”
Nat. Mater.
18
,
816
(
2019
).
14.
Y.
Zhong
,
H.-S.
Chang
,
K.
Satzinger
,
M.-H.
Chou
,
A.
Bienfait
,
C.
Conner
,
É.
Dumur
,
J.
Grebel
,
G.
Peairs
,
R.
Povey
, and
D. I.
Schuster
, “
Violating Bell’s inequality with remotely connected superconducting qubits
,”
Nat. Phys.
15
,
741
(
2019
).
15.
P.
Kurpiers
,
M.
Pechal
,
B.
Royer
,
P.
Magnard
,
T.
Walter
,
J.
Heinsoo
,
Y.
Salathé
,
A.
Akin
,
S.
Storz
,
J.-C.
Besse
, and
S.
Gasparinetti
, “
Quantum communication with time-bin encoded microwave photons
,”
Phys. Rev. Appl.
12
,
044067
(
2019
).
16.
Y.
Xu
,
W.
Cai
,
Y.
Ma
,
X.
Mu
,
L.
Hu
,
T.
Chen
,
H.
Wang
,
Y.
Song
,
Z.-Y.
Xue
,
Z.-Q.
Yin
, and
L.
Sun
, “
Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit
,”
Phys. Rev. Lett.
121
,
110501
(
2018
).
17.
X.
Li
,
Y.
Ma
,
J.
Han
,
T.
Chen
,
Y.
Xu
,
W.
Cai
,
H.
Wang
,
Y.
Song
,
Z.-Y.
Xue
,
Z.-Q.
Yin
, and
L.
Sun
, “
Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings
,”
Phys. Rev. Appl.
10
,
054009
(
2018
).
18.
C.
Müller
,
J. H.
Cole
, and
J.
Lisenfeld
, “
Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits
,”
Rep. Prog. Phys.
82
,
124501
(
2019
).
19.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
(
1998
).
20.
V. N.
Golovach
,
A.
Khaetskii
, and
D.
Loss
, “
Phonon-induced decay of the electron spin in quantum dots
,”
Phys. Rev. Lett.
93
,
016601
(
2004
).
21.
S.
Amasha
,
K.
MacLean
,
I. P.
Radu
,
D.
Zumbühl
,
M.
Kastner
,
M.
Hanson
, and
A.
Gossard
, “
Electrical control of spin relaxation in a quantum dot
,”
Phys. Rev. Lett.
100
,
046803
(
2008
).
22.
A.
Balocchi
,
Q.
Duong
,
P.
Renucci
,
B.
Liu
,
C.
Fontaine
,
T.
Amand
,
D.
Lagarde
, and
X.
Marie
, “
Full electrical control of the electron spin relaxation in GaAs quantum wells
,”
Phys. Rev. Lett.
107
,
136604
(
2011
).
23.
Z.
Li
,
M.
Sotto
,
F.
Liu
,
M. K.
Husain
,
H.
Yoshimoto
,
Y.
Sasago
,
D.
Hisamoto
,
I.
Tomita
,
Y.
Tsuchiya
, and
S.
Saito
, “
Random telegraph noise from resonant tunnelling at low temperatures
,”
Sci. Rep.
8
,
1
(
2018
).
24.
F.
Liu
,
K.
Ibukuro
,
M. K.
Husain
,
Z.
Li
,
J.
Hillier
,
I.
Tomita
,
Y.
Tsuchiya
,
H.
Rutt
, and
S.
Saito
, “
Manipulation of random telegraph signals in a silicon nanowire transistor with a triple gate
,”
Nanotechnology
29
,
475201
(
2018
).
25.
S.
Singh
,
E. T.
Mannila
,
D. S.
Golubev
,
J. T.
Peltonen
, and
J. P.
Pekola
, “
Determining the parameters of a random telegraph signal by digital low pass filtering
,”
Appl. Phys. Lett.
112
,
243101
(
2018
).
26.
X.
Zhan
,
Y.
Xi
,
Q.
Wang
,
W.
Zhang
,
Z.
Ji
, and
J.
Chen
, “
Dual-point technique for multi-trap RTN signal extraction
,”
IEEE Access
8
,
88141
(
2020
).
27.
H.
Yang
,
M.
Robitaille
,
X.
Chen
,
H.
Elgabra
,
L.
Wei
, and
N. Y.
Kim
, “
Random telegraph noise of a 28-nm cryogenic MOSFET in the coulomb blockade regime
,”
IEEE Electron Device Lett.
43
,
5
(
2021
).
28.
M.
Möttönen
,
R.
de Sousa
,
J.
Zhang
, and
K. B.
Whaley
, “
High-fidelity one-qubit operations under random telegraph noise
,”
Phys. Rev. A
73
,
022332
(
2006
).
29.
J.
Jing
,
L.-A.
Wu
,
M.
Byrd
,
J. Q.
You
,
T.
Yu
, and
Z.-M.
Wang
, “
Nonperturbative leakage elimination operators and control of a three-level system
,”
Phys. Rev. Lett.
114
,
190502
(
2015
).
30.
Ł.
Cywiński
,
R. M.
Lutchyn
,
C. P.
Nave
, and
S. D.
Sarma
, “
How to enhance dephasing time in superconducting qubits
,”
Phys. Rev. B
77
,
174509
(
2008
).
31.
J.
Simon
,
F.
Calderon-Vargas
,
E.
Barnes
, and
S. E.
Economou
, “
Fast noise-resistant control of donor nuclear spin qubits in silicon
,”
Phys. Rev. B
101
,
205307
(
2020
).
32.
J.
Truong
and
X.
Hu
, “Decoherence of coupled flip-flop qubits due to charge noise,” arXiv:2104.07485 (2021).
33.
E.
Ferraro
,
D.
Rei
,
M.
Paris
, and
M.
De Michielis
, “
Universal set of quantum gates for the flip-flop qubit in the presence of 1/f noise
,”
EPJ Quantum Technol.
9
,
1
(
2022
).
34.
H.
Bluhm
,
S.
Foletti
,
I.
Neder
,
M.
Rudner
,
D.
Mahalu
,
V.
Umansky
, and
A.
Yacoby
, “
Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs
,”
Nat. Phys.
7
,
109
(
2011
).
35.
J. R.
Petta
,
A. C.
Johnson
,
J. M.
Taylor
,
E. A.
Laird
,
A.
Yacoby
,
M. D.
Lukin
,
C. M.
Marcus
,
M. P.
Hanson
, and
A. C.
Gossard
, “
Coherent manipulation of coupled electron spins in semiconductor quantum dots
,”
Science
309
,
2180
(
2005
).
36.
B. M.
Maune
,
M. G.
Borselli
,
B.
Huang
,
T. D.
Ladd
,
P. W.
Deelman
,
K. S.
Holabird
,
A. A.
Kiselev
,
I.
Alvarado-Rodriguez
,
R. S.
Ross
,
A. E.
Schmitz
, and
M.
Sokolich
, “
Coherent singlet-triplet oscillations in a silicon-based double quantum dot
,”
Nature
481
,
344
(
2012
).
37.
J. J.
Pla
,
K. Y.
Tan
,
J. P.
Dehollain
,
W. H.
Lim
,
J. J.
Morton
,
D. N.
Jamieson
,
A. S.
Dzurak
, and
A.
Morello
, “
A single-atom electron spin qubit in silicon
,”
Nature
489
,
541
(
2012
).
38.
F. K.
Malinowski
,
F.
Martins
,
T. B.
Smith
,
S. D.
Bartlett
,
A. C.
Doherty
,
P. D.
Nissen
,
S.
Fallahi
,
G. C.
Gardner
,
M. J.
Manfra
,
C. M.
Marcus
, and
F.
Kuemmeth
, “
Spin of a multielectron quantum dot and its interaction with a neighboring electron
,”
Phys. Rev. X
8
,
011045
(
2018
).
39.
M.
Friesen
,
J.
Ghosh
,
M.
Eriksson
, and
S.
Coppersmith
, “
A decoherence-free subspace in a charge quadrupole qubit
,”
Nat. Commun.
8
,
15923
(
2017
).
40.
F.
Martins
,
F. K.
Malinowski
,
P. D.
Nissen
,
S.
Fallahi
,
G. C.
Gardner
,
M. J.
Manfra
,
C. M.
Marcus
, and
F.
Kuemmeth
, “
Negative spin exchange in a multielectron quantum dot
,”
Phys. Rev. Lett.
119
,
227701
(
2017
).
41.
Y.
He
,
S.
Gorman
,
D.
Keith
,
L.
Kranz
,
J.
Keizer
, and
M.
Simmons
, “
A two-qubit gate between phosphorus donor electrons in silicon
,”
Nature
571
,
371
(
2019
).
42.
J.
Geng
,
Y.
Wu
,
X.
Wang
,
K.
Xu
,
F.
Shi
,
Y.
Xie
,
X.
Rong
, and
J.
Du
, “
Experimental time-optimal universal control of spin qubits in solids
,”
Phys. Rev. Lett.
117
,
170501
(
2016
).
43.
B.-J.
Liu
,
X.-K.
Song
,
Z.-Y.
Xue
,
X.
Wang
, and
M.-H.
Yung
, “
Plug-and-play approach to nonadiabatic geometric quantum gates
,”
Phys. Rev. Lett.
123
,
100501
(
2019
).
44.
R. E.
Throckmorton
,
E.
Barnes
, and
S. D.
Sarma
, “
Environmental noise effects on entanglement fidelity of exchange-coupled semiconductor spin qubits
,”
Phys. Rev. B
95
,
085405
(
2017
).
45.
X.-C.
Yang
,
M.-H.
Yung
, and
X.
Wang
, “
Neural-network-designed pulse sequences for robust control of singlet-triplet qubits
,”
Phys. Rev. A
97
,
042324
(
2018
).
46.
C.-H.
Huang
and
H.-S.
Goan
, “
Robust quantum gates for stochastic time-varying noise
,”
Phys. Rev. A
95
,
062325
(
2017
).
47.
N.
Ofek
,
A.
Petrenko
,
R.
Heeres
,
P.
Reinhold
,
Z.
Leghtas
,
B.
Vlastakis
,
Y.
Liu
,
L.
Frunzio
,
S.
Girvin
,
L.
Jiang
, and
M.
Mirrahimi
, “
Extending the lifetime of a quantum bit with error correction in superconducting circuits
,”
Nature
536
,
441
(
2016
).
48.
M. H.
Michael
,
M.
Silveri
,
R.
Brierley
,
V. V.
Albert
,
J.
Salmilehto
,
L.
Jiang
, and
S. M.
Girvin
, “
New class of quantum error-correcting codes for a bosonic mode
,”
Phys. Rev. X
6
,
031006
(
2016
).
49.
B. J.
Brown
,
D.
Loss
,
J. K.
Pachos
,
C. N.
Self
, and
J. R.
Wootton
, “
Quantum memories at finite temperature
,”
Rev. Mod. Phys.
88
,
045005
(
2016
).
50.
A.
Reiserer
,
N.
Kalb
,
M. S.
Blok
,
K. J.
van Bemmelen
,
T. H.
Taminiau
,
R.
Hanson
,
D. J.
Twitchen
, and
M.
Markham
, “
Robust quantum-network memory using decoherence-protected subspaces of nuclear spins
,”
Phys. Rev. X
6
,
021040
(
2016
).
51.
H.-K.
Lau
and
M. B.
Plenio
, “
Universal quantum computing with arbitrary continuous-variable encoding
,”
Phys. Rev. Lett.
117
,
100501
(
2016
).
52.
B.-H.
Liu
,
X.-M.
Hu
,
J.-S.
Chen
,
C.
Zhang
,
Y.-F.
Huang
,
C.-F.
Li
,
G.-C.
Guo
,
G. B. U.
Karpat
,
F. F.
Fanchini
,
J.
Piilo
, and
S.
Maniscalco
, “
Time-invariant entanglement and sudden death of nonlocality
,”
Phys. Rev. A
94
,
062107
(
2016
).
53.
A.
Castro
,
J.
Werschnik
, and
E. K.
Gross
, “
Controlling the dynamics of many-electron systems from first principles: A combination of optimal control and time-dependent density-functional theory
,”
Phys. Rev. Lett.
109
,
153603
(
2012
).
54.
X.
Wang
,
L. S.
Bishop
,
J.
Kestner
,
E.
Barnes
,
K.
Sun
, and
S. D.
Sarma
, “
Composite pulses for robust universal control of singlet–triplet qubits
,”
Nat. Commun.
3
,
997
(
2012
).
55.
M.
Jenei
,
E.
Potanina
,
R.
Zhao
,
K. Y.
Tan
,
A.
Rossi
,
T.
Tanttu
,
K. W.
Chan
,
V.
Sevriuk
,
M.
Möttönen
, and
A.
Dzurak
, “
Waiting time distributions in a two-level fluctuator coupled to a superconducting charge detector
,”
Phys. Rev. Res.
1
,
033163
(
2019
).
56.
S. L.
Rudge
and
D. S.
Kosov
, “
Fluctuating-time and full counting statistics for quantum transport in a system with internal telegraphic noise
,”
Phys. Rev. B
100
,
235430
(
2019
).
57.
F.
Motzoi
,
E.
Halperin
,
X.
Wang
,
K. B.
Whaley
, and
S.
Schirmer
, “
Backaction-driven, robust, steady-state long-distance qubit entanglement over lossy channels
,”
Phys. Rev. A
94
,
032313
(
2016
).
58.
C.
Dickel
,
J. J.
Wesdorp
,
N. K.
Langford
,
S.
Peiter
,
R.
Sagastizabal
,
A.
Bruno
,
B.
Criger
,
F.
Motzoi
, and
L.
DiCarlo
, “
Chip-to-chip entanglement of transmon qubits using engineered measurement fields
,”
Phys. Rev. B
97
,
064508
(
2018
).
59.
P.
Kurpiers
,
P.
Magnard
,
T.
Walter
,
B.
Royer
,
M.
Pechal
,
J.
Heinsoo
,
Y.
Salathé
,
A.
Akin
,
S.
Storz
,
S.
Besse
,
J.-C.
Gasparinetti
,
A.
Blais
, and
A.
Wallraff
, “
Deterministic quantum state transfer and remote entanglement using microwave photons
,”
Nature
558
,
264
(
2018
).
60.
P.
Campagne-Ibarcq
,
E.
Zalys-Geller
,
A.
Narla
,
S.
Shankar
,
P.
Reinhold
,
L.
Burkhart
,
C.
Axline
,
W.
Pfaff
,
L.
Frunzio
,
R.
Schoelkopf
, and
M. H.
Devoret
, “
Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions
,”
Phys. Rev. Lett.
120
,
200501
(
2018
).
61.
G.
Dridi
,
M.
Mejatty
,
S. J.
Glaser
, and
D.
Sugny
, “
Robust control of a not gate by composite pulses
,”
Phys. Rev. A
101
,
012321
(
2020
).
62.
E.
Paladino
,
Y.
Galperin
,
G.
Falci
, and
B.
Altshuler
, “
1/f noise: Implications for solid-state quantum information
,”
Rev. Mod. Phys.
86
,
361
(
2014
).
63.
J.
Bergli
and
L.
Faoro
, “
Exact solution for the dynamical decoupling of a qubit with telegraph noise
,”
Phys. Rev. B
75
,
054515
(
2007
).
64.
Y. M.
Galperin
,
B.
Altshuler
,
J.
Bergli
, and
D.
Shantsev
, “
Non-Gaussian low-frequency noise as a source of qubit decoherence
,”
Phys. Rev. Lett.
96
,
097009
(
2006
).
65.
L.
Faoro
and
L.
Viola
, “
Dynamical suppression of 1/f noise processes in qubit systems
,”
Phys. Rev. Lett.
92
,
117905
(
2004
).
66.
G.
Falci
,
A.
D’Arrigo
,
A.
Mastellone
, and
E.
Paladino
, “
Dynamical suppression of telegraph and 1/f noise due to quantum bistable fluctuators
,”
Phys. Rev. A
70
,
040101
(
2004
).
67.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2000
).
68.
R. P.
Feynman
, “
An operator calculus having applications in quantum electrodynamics
,”
Phys. Rev.
84
,
108
(
1951
).
69.
V. S.
Popov
, “
Feynman disentangling of noncommuting operators and group representation theory
,”
Phys.-Usp.
50
,
1217
(
2007
).
70.
G.
Benenti
and
G.
Strini
, “
Computing the distance between quantum channels: Usefulness of the fano representation
,”
J. Phys. B
43
,
215508
(
2010
).
You do not currently have access to this content.