Ferroelectric hafnium-zirconium oxide (HZO) is an excellent candidate for low-power non-volatile memory applications due to its demonstrated ferroelectricity at the nanoscale and compatibility with silicon-based technologies. The interface of HZO in contact with its electrode, typically TiN in a metal–ferroelectric–metal (MFM) capacitor configuration, is of particular interest because factors, such as volume confinement, impurity concentration, interfacial layers, thermal expansion mismatch, and defect trapping, are believed to play a crucial role in the ferroelectric performance of HZO-based devices. Processing variables, such as precursor type, oxygen source, dose duration, and deposition temperature, are known to strongly affect the quality of the oxide–metal interface. However, not many studies have focused on the effect of breaking or maintaining vacuum during MFM deposition. In this study, sequential, no-atmosphere processing (SNAP) is employed to avoid atmospheric exposure, where electrode TiN and ferroelectric HZO are deposited sequentially in the atomic layer deposition chamber without breaking vacuum. The effect of breaking vacuum during the sequential deposition steps is elucidated by fabricating and characterizing MFM capacitors with and without intentional vacuum breaks prior to the deposition of the HZO and top TiN. Using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS), we reveal that breaking vacuum after bottom TiN electrode deposition leads to interfacial oxidation and increased carbon contamination, which preferentially stabilizes the non-ferroelectric tetragonal phase and lead to diminished remanent polarization. Avoiding carbon impurities and interfacial TiOx at the HZO and TiN interface using SNAP leads to heightened remanent polarization, reduced leakage current density, and elimination of the wake-up effect. Our work highlights the effect of vacuum breaking on the processing-structure-properties of HZO-based capacitors, revealing that maintaining vacuum can significantly improve ferroelectric properties.

1.
T. S.
Böscke
,
S.
Teichert
,
D.
Bräuhaus
,
J.
Müller
,
U.
Schröder
,
U.
Böttger
, and
T.
Mikolajick
, “
Phase transitions in ferroelectric silicon doped hafnium oxide
,”
Appl. Phys. Lett.
99
(
11
),
112904
(
2011
).
2.
S.
Mueller
,
J.
Muller
,
R.
Hoffmann
,
E.
Yurchuk
,
T.
Schlosser
,
R.
Boschke
,
J.
Paul
,
M.
Goldbach
,
T.
Herrmann
,
A.
Zaka
,
U.
Schroder
, and
T.
Mikolajick
, “
From MFM capacitors toward ferroelectric transistors endurance and disturb characteristics of HfO2-based FeFET devices
,”
IEEE Trans. Electron Devices
60
(
12
),
4199
4205
(
2013
).
3.
C.
Gattinoni
,
N.
Strkalj
,
R.
Härdi
,
M.
Fiebig
,
M.
Trassin
, and
N. A.
Spaldin
, “
Interface and surface stabilization of the polarization in ferroelectric thin films
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
46
),
28589
28595
(
2020
).
4.
P. D.
Lomenzo
,
Q.
Takmeel
,
C.
Zhou
,
C. M.
Fancher
,
E.
Lambers
,
N. G.
Rudawski
,
J. L.
Jones
,
S.
Moghaddam
, and
T.
Nishida
, “
Tan interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films
,”
J. Appl. Phys.
117
(
13
),
134105
(
2015
).
5.
E. O.
Filatova
,
S. S.
Sakhonenkov
,
A. S.
Konashuk
, and
V. V.
Afanas’ev
, “
Control of TiN oxidation upon atomic layer deposition of oxides
,”
Phys. Chem. Chem. Phys.
20
(
44
),
27975
27982
(
2018
).
6.
T.
Szyjka
,
L.
Baumgarten
,
T.
Mittmann
,
Y.
Matveyev
,
C.
Schlueter
,
T.
Mikolajick
,
U.
Schroeder
, and
M.
Müller
, “
Enhanced ferroelectric polarization in TiN/HfO2/TiN capacitors by interface design
,”
ACS Appl. Electron. Mater.
2
(
10
),
3152
3159
(
2020
).
7.
S. S.
Fields
,
S. W.
Smith
,
C. M.
Fancher
,
M. D.
Henry
,
S. L.
Wolfley
,
M. G.
Sales
,
S. T.
Jaszewski
,
M. A.
Rodriguez
,
G.
Esteves
,
P. S.
Davids
,
S. J.
McDonnell
, and
J. F.
Ihlefeld
, “
Metal nitride electrode stress and chemistry effects on phase and polarization response in ferroelectric Hf0.5Zr0.5O2 thin films
,”
Adv. Mater. Interfaces
8
(
10
),
2100018
(
2021
).
8.
S. J.
Kim
,
J.
Mohan
,
S. R.
Summerfelt
, and
J.
Kim
, “
Ferroelectric Hf0.5Zr0.5O2 thin films: A review of recent advances
,”
JOM
71
(
1
),
246
255
(
2019
).
9.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
, “
Review and perspective on ferroelectric HfO2-based thin films for memory applications
,”
MRC
8
(
03
),
795
808
(
2018
).
10.
E. D.
Grimley
,
T.
Schenk
,
T.
Mikolajick
,
U.
Schroeder
, and
J. M.
LeBeau
, “
Atomic structure of domain and interphase boundaries in ferroelectric HfO2
,”
Adv. Mater. Interfaces
5
(
5
),
1701258
(
2018
).
11.
K. D.
Kim
,
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
Y. H.
Lee
,
S. D.
Hyun
,
T.
Gwon
, and
C. S.
Hwang
, “
Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition
,”
J. Mater. Chem. C
4
(
28
),
6864
6872
(
2016
).
12.
Y.
Lee
,
H.
Alex Hsain
,
S. S.
Fields
,
S. T.
Jaszewski
,
M. D.
Horgan
,
P. G.
Edgington
,
J. F.
Ihlefeld
,
G. N.
Parsons
, and
J. L.
Jones
, “
Unexpectedly large remanent polarization of Hf0.5Zr0.5O2 metal–ferroelectric–metal capacitor fabricated without breaking vacuum
,”
Appl. Phys. Lett.
118
(
1
),
012903
(
2021
).
13.
J. Y.
Kim
,
Y.
Kim
, and
H.
Jeon
, “
Characteristics of TiN films deposited by remote plasma-enhanced atomic layer deposition method
,”
Jpn. J. Appl. Phys.
42
(
Part 2, No. 4B
),
L414
L416
(
2003
).
14.
O. S.
Yulmetova
,
M. S.
Tutova
, and
R. F.
Yulmetova
, “
Chemical analysis of thin-film’s colour generation during surface laser oxidation of TiN-coating
,”
J. Phys.: Conf. Ser.
1124
,
081010
(
2018
).
15.
W.
Weinreich
,
A.
Shariq
,
K.
Seidel
,
J.
Sundqvist
,
A.
Paskaleva
,
M.
Lemberger
, and
A. J.
Bauer
, “
Detailed leakage current analysis of metal–insulator–metal capacitors with ZrO2, ZrO2/SiO2 /ZrO2, and ZrO2/Al2O3/ZrO2 as dielectric and TiN electrodes
,”
J. Vac. Sci. Technol. B
31
(
1
),
01A109
(
2013
).
16.
L.
Xu
,
T.
Nishimura
,
S.
Shibayama
,
T.
Yajima
,
S.
Migita
, and
A.
Toriumi
, “
Ferroelectric phase stabilization of HfO2 by nitrogen doping
,”
Appl. Phys. Express
9
(
9
),
091501
(
2016
).
17.
V. P.
Londhe
,
A.
Gupta
,
N.
Ponpandian
,
D.
Kumar
, and
V. R.
Reddy
, “
TiO2 as diffusion barrier at Co/AlQ3 interface studied by x-Ray standing wave technique
,”
J. Phys. D: Appl. Phys.
51
(
22
),
225303
(
2018
).
18.
P.
Alén
,
M.
Vehkamäki
,
M.
Ritala
, and
M.
Leskelä
, “
Diffusion barrier properties of atomic layer deposited ultrathin Ta2O5 and TiO2 films
,”
J. Electrochem. Soc.
153
,
G304
(
2006
).
19.
M. H.
Park
,
H. J.
Kim
,
G.
Lee
,
J.
Park
,
Y. H.
Lee
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
S. D.
Hyun
,
H. W.
Park
,
H. J.
Chang
,
J.-H.
Choi
, and
C. S.
Hwang
, “
A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices
,”
Appl. Phys. Rev.
6
(
4
),
041403
(
2019
).
20.
M.-Y.
Ho
,
H.
Gong
,
G. D.
Wilk
,
B. W.
Busch
,
M. L.
Green
,
P. M.
Voyles
,
D. A.
Muller
,
M.
Bude
,
W. H.
Lin
,
A.
See
,
M. E.
Loomans
,
S. K.
Lahiri
, and
P. I.
Räisänen
, “
Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition
,”
J. Appl. Phys.
93
(
3
),
1477
1481
(
2003
).
21.
A. J.
Lee
,
B. S.
Kim
,
J. H.
Hwang
,
Y.
Kim
,
H.
Oh
,
Y.
Park
, and
W.
Jeon
, “
Controlling the crystallinity of HfO2 thin film using the surface energy-driven phase stabilization and template effect
,”
Appl. Surf. Sci.
590
,
153082
(
2022
).
22.
H. A.
Hsain
,
Y.
Lee
,
G.
Parsons
, and
J. L.
Jones
, “
Compositional dependence of crystallization temperatures and phase evolution in hafnia-zirconia (Hfx Zr1−x)O2 thin films
,”
Appl. Phys. Lett.
116
(
19
),
192901
(
2020
).
23.
U.
Schroeder
,
T.
Mittmann
,
M.
Materano
,
P. D.
Lomenzo
,
P.
Edgington
,
Y. H.
Lee
,
M.
Alotaibi
,
A. R.
West
,
T.
Mikolajick
,
A.
Kersch
, and
J. L.
Jones
, “
Temperature-dependent phase transitions in HfxZr1–xO2 mixed oxides: Indications of a proper ferroelectric material
,”
Adv. Elect. Mater.
116
,
2200265
(
2022
).
24.
C.
Künneth
,
R.
Materlik
,
M.
Falkowski
, and
A.
Kersch
, “
Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO2 from first-principles: Implications for ferroelectric memory and energy-related applications
,”
ACS Appl. Nano Mater.
1
(
1
),
254
264
(
2018
).
25.
G.
Esteves
,
K.
Ramos
,
C.
Fancher
, and
J.
Jones
,
LIPRAS (Line-Profile Analysis Software)
(
2017
).
26.
Y.
Lee
,
R. A.
Broughton
,
H. A.
Hsain
,
S. K.
Song
,
P. G.
Edgington
,
M. D.
Horgan
,
A.
Dowden
,
A.
Bednar
,
D. H.
Lee
,
G. N.
Parsons
,
M. H.
Park
, and
J. L.
Jones
, “
The influence of crystallographic texture on structural and electrical properties in ferroelectric Hf0.5Zr0.5O2
,”
J. Appl. Phys.
132
(
24
),
244103
(
2022
).
27.
A. K.
Tagantsev
,
M.
Landivar
,
E.
Colla
, and
N.
Setter
, “
Identification of passive layer in ferroelectric thin films from their switching parameters
,”
J. Appl. Phys.
78
(
4
),
2623
2630
(
1995
).
28.
P. D.
Lomenzo
,
C.
Richter
,
T.
Mikolajick
, and
U.
Schroeder
, “
Depolarization as driving force in antiferroelectric hafnia and ferroelectric wake-up
,”
ACS Appl. Electron. Mater.
2
(
6
),
1583
1595
(
2020
).
29.
T.
Schenk
,
M.
Hoffmann
,
J.
Ocker
,
M.
Pešić
,
T.
Mikolajick
, and
U.
Schroeder
, “
Complex internal bias fields in ferroelectric hafnium oxide
,”
ACS Appl. Mater. Interfaces
7
(
36
),
20224
20233
(
2015
).
30.
J. F.
Scott
and
M.
Dawber
, “
Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics
,”
Appl. Phys. Lett.
76
(
25
),
3801
3803
(
2000
).
31.
E. D.
Grimley
,
T.
Schenk
,
X.
Sang
,
M.
Pešić
,
U.
Schroeder
,
T.
Mikolajick
, and
J. M.
LeBeau
, “
Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films
,”
Adv. Electron. Mater.
2
(
9
),
1600173
(
2016
).
32.
B.
Chen
,
H.
Yang
,
L.
Zhao
,
J.
Miao
,
B.
Xu
,
X. G.
Qiu
,
B. R.
Zhao
,
X. Y.
Qi
, and
X. F.
Duan
, “
Thickness and dielectric constant of dead layer in Pt/(Ba0.7Sr0.3)TiO3/YBa2Cu3O7−x capacitor
,”
Appl. Phys. Lett.
84
(
4
),
583
585
(
2004
).
33.
Y.
Podgorny
,
V.
Vorotilov
,
K. A.
Sigov
,
A. S.
Scott
, and
J.
F
, “
Dead layer thickness estimation at the ferroelectric film-metal interface in PZT
,”
Appl. Phys. Lett.
114
(
13
),
132902
(
2019
).
34.
M.-J.
Choi
,
H.-H.
Park
,
D. S.
Jeong
,
J. H.
Kim
,
J.-S.
Kim
, and
S. K.
Kim
, “
Atomic layer deposition of HfO2 thin films using H2O2 as oxidant
,”
Appl. Surf. Sci.
301
,
451
455
(
2014
).
35.
K. D.
Kim
,
Y. H.
Lee
,
T.
Gwon
,
Y. J.
Kim
,
H. J.
Kim
,
T.
Moon
,
S. D.
Hyun
,
H. W.
Park
,
M. H.
Park
, and
C. S.
Hwang
, “
Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors
,”
Nano Energy
39
,
390
399
(
2017
).
36.
F. P. G.
Fengler
,
M.
Pešić
,
S.
Starschich
,
T.
Schneller
,
C.
Künneth
,
U.
Böttger
,
H.
Mulaosmanovic
,
T.
Schenk
,
M. H.
Park
,
R.
Nigon
,
P.
Muralt
,
T.
Mikolajick
, and
U.
Schroeder
, “
Domain pinning: Comparison of hafnia and PZT based ferroelectrics
,”
Adv. Electron. Mater.
3
(
4
),
1600505
(
2017
).
37.
F.
Xu
,
S.
Trolier-McKinstry
,
W.
Ren
,
B.
Xu
,
Z.-L.
Xie
, and
K. J.
Hemker
, “
Domain wall motion and Its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films
,”
J. Appl. Phys.
89
(
2
),
1336
1348
(
2001
).
38.
M.
Pešić
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
, “
Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors
,”
Adv. Funct. Mater.
26
(
25
),
4601
4612
(
2016
).
39.
B.
Xu
,
C.
Paillard
,
B.
Dkhil
, and
L.
Bellaiche
, “
Pinched hysteresis loop in defect-free ferroelectric materials
,”
Phys. Rev. B
94
(
14
),
140101
(
2016
).
40.
P.
Yang
and
D. A.
Payne
, “
Thermal stability of field-forced and field-assisted antiferroelectric-ferroelectric phase transformations in Pb(Zr,Sn,Ti)O3
,”
J. Phys. Appl.
71
,
1361
(
1992
).
41.
A.
Pelaiz-Barranco
and
D. A.
Hall
, “
Influence of composition and pressure on the electric field-induced antiferroelectric to ferroelectric phase transformation in lanthanum modified lead zirconate titanate ceramics
,”
IEEE Trans Ultrason Ferroelectr Freq Control
56
(
9
),
1785
1791
(
2009
).
42.
M. H.
Park
,
C.
Chung
,
T.
Schenk
,
C.
Richter
,
M.
Hoffmann
,
S.
Wirth
,
J. L.
Jones
,
T.
Mikolajick
, and
U.
Schroeder
, “
Origin of temperature-dependent ferroelectricity in Si-doped HfO2
,”
Adv. Electron. Mater.
4
(
4
),
1700489
(
2018
).
43.
Y.
Cheng
,
Z.
Gao
,
K. H.
Ye
,
H. W.
Park
,
Y.
Zheng
,
Y.
Zheng
,
J.
Gao
,
M. H.
Park
,
J.-H.
Choi
,
K.-H.
Xue
,
C. S.
Hwang
, and
H.
Lyu
, “
Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film
,”
Nat. Commun.
13
(
1
),
645
(
2022
).
44.
E.
Cartier
and
A.
Kerber
, “
Stress-induced leakage current and defect generation in NFETs with HfO2/TiN gate stacks during positive-bias temperature stress
,” in
2009 IEEE International Reliability Physics Symposium
,
Montreal, QC, Canada
(
IEEE
,
2009)
, pp.
486
492
.
45.
F.
Huang
,
X.
Chen
,
X.
Liang
,
J.
Qin
,
Y.
Zhang
,
T.
Huang
,
Z.
Wang
,
B.
Peng
,
P.
Zhou
,
H.
Lu
,
L.
Zhang
,
L.
Deng
,
M.
Liu
,
Q.
Liu
,
H.
Tian
, and
L.
Bi
, “
Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition
,”
Phys. Chem. Chem. Phys.
19
(
5
),
3486
3497
(
2017
).
46.
H.-J.
Lee
,
M.
Lee
,
K.
Lee
,
J.
Jo
,
H.
Yang
,
Y.
Kim
,
S. C.
Chae
,
U.
Waghmare
, and
J. H.
Lee
, “
Scale-free ferroelectricity induced by flat phonon bands in HfO2
,”
Science
369
(
6509
),
1343
1347
(
2020
).
47.
M.
Pešić
,
C.
Künneth
,
M.
Hoffmann
,
H.
Mulaosmanovic
,
S.
Müller
,
E. T.
Breyer
,
U.
Schroeder
,
A.
Kersch
,
T.
Mikolajick
, and
S.
Slesazeck
, “
A computational study of hafnia-based ferroelectric memories: From Ab initio via physical modeling to circuit models of ferroelectric device
,”
J. Comput. Electron.
16
(
4
),
1236
1256
(
2017
).
48.
D. R.
Islamov
,
V. A.
Gritsenko
,
T. V.
Perevalov
,
V. A.
Pustovarov
,
O. M.
Orlov
,
A. G.
Chernikova
,
A. M.
Markeev
,
S.
Slesazeck
,
U.
Schroeder
,
T.
Mikolajick
, and
G. Y.
Krasnikov
, “
Identification of the nature of traps involved in the field cycling of Hf0.5Zr0.5O2-based ferroelectric thin films
,”
Acta Mater.
166
,
47
55
(
2019
).
49.
H.-S.
Jung
,
S. H.
Jeon
,
H. K.
Kim
,
I.-H.
Yu
,
S. Y.
Lee
,
J.
Lee
,
Y. J.
Chung
,
D.-Y.
Cho
,
N.-I.
Lee
,
T. J.
Park
,
J.-H.
Choi
,
S.
Han
, and
C. S.
Hwang
, “
The impact of carbon concentration on the crystalline phase and dielectric constant of atomic layer deposited HfO 2 films on Ge substrate
,”
ECS J. Solid State Sci. Technol.
1
(
2
),
N33
N37
(
2012
).
50.
M.
Choi
,
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Impact of carbon and nitrogen impurities in high-κ dielectrics on metal-oxide-semiconductor devices
,”
Appl. Phys. Lett.
102
(
14
),
142902
(
2013
).
51.
M.
Materano
,
P. D.
Lomenzo
,
A.
Kersch
,
M. H.
Park
,
T.
Mikolajick
, and
U.
Schroeder
, “
Interplay between oxygen defects and dopants: Effect on structure and performance of HfO2-based ferroelectrics
,”
Inorg. Chem. Front.
8
(
10
),
2650
2672
(
2021
).
52.
S. S.
Fields
,
S. W.
Smith
,
S. T.
Jaszewski
,
T.
Mimura
,
D. A.
Dickie
,
G.
Esteves
,
M.
David Henry
,
S. L.
Wolfley
,
P. S.
Davids
, and
J. F.
Ihlefeld
, “
Wake-up and fatigue mechanisms in ferroelectric Hf0.5Zr0.5O2 films with symmetric RuO2 electrodes
,”
J. Appl. Phys.
130
(
13
),
134101
(
2021
).
53.
T.
Shimizu
,
T.
Mimura
,
T.
Kiguchi
,
T.
Shiraishi
,
T.
Konno
,
Y.
Katsuya
,
O.
Sakata
, and
H.
Funakubo
, “
Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films
,”
Appl. Phys. Lett.
113
(
21
),
212901
(
2018
).
54.
W. L.
Warren
,
D.
Dimos
,
B. A.
Tuttle
,
G. E.
Pike
,
R. W.
Schwartz
,
P. J.
Clews
, and
D. C.
McIntyre
, “
Polarization suppression in Pb(Zr,Ti)O3 thin films
,”
J. Appl. Phys.
77
(
12
),
6695
6702
(
1995
).
55.
E. L.
Colla
,
D. V.
Taylor
,
A. K.
Tagantsev
, and
N.
Setter
, “
Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes
,”
Appl. Phys. Lett.
72
(
19
),
2478
2480
(
1998
).
56.
R.
Alcala
,
P.
Mehmood
,
P.
Vishnumurthy
,
T.
Mittmann
,
T.
Mikolajick
, and
U.
Schroeder
, “
Influence of interfacial oxide layers in Hf0.5Zr0.5O2 based ferroelectric capacitors on reliability performance
,” in
2022 IEEE International Memory Workshop (IMW)
(
IEEE
,
2022
), pp.
1
4
.
57.
M.
Hyuk Park
,
H.
Joon Kim
,
Y.
Jin Kim
,
W.
Lee
,
H.
Kyeom Kim
, and
C.
Seong Hwang
, “
Effect of forming Gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes
,”
Appl. Phys. Lett.
102
(
11
),
112914
(
2013
).

Supplementary Material

You do not currently have access to this content.