In the domain of phase change memories (PCMs), intensive research is conducted to reduce the programming cycle cost. The RESET operation is done by melting the PCM and then quenching the liquid phase to put it back to the amorphous state. In most of the devices, the heating is realized by the Joule effect with a titanium nitride (TiN) component put in contact with the PCM itself. One of the crucial points to improve the efficiency of this technology is to characterize the thermal contact between TiN and PCM. Having a low thermal resistance between the heater and the PCM ensures the heat transfer between the two is as efficient as possible. In this work, the interfacial thermal resistance between Ge-doped G 2Sb 2Te 5 (GeGST)/TiN in multilayer systems has been characterized, and the influence of the compressive stress exerted by the TiN layers on the GeGST crystallization has been highlighted.

1.
A.
Redaelli
,
Phase Change Memory
(
Springer
,
2017
).
2.
S. W.
Fong
,
C. M.
Neumann
, and
H.-S. P.
Wong
, “
Phase-change memory. Towards a storage-class memory
,”
IEEE Trans. Electron Devices
64
(
11
),
4374
4385
(
2017
).
3.
A. L.
Lacaita
and
A.
Redaelli
, “
The race of phase change memories to nanoscale storage and applications
,”
Microelectron. Eng.
109
,
351
356
(
2013
).
4.
X.
Zhou
,
M.
Xia
,
F.
Rao
,
L.
Wu
,
X.
Li
,
Z.
Song
,
S.
Feng
, and
H.
Sun
, “
Understanding phase-change behaviors of carbon-doped Ge 2Sb 2Te 5 for phase-change memory application
,”
ACS Appl. Mater. Interfaces
6
(
16
),
14207
14214
(
2014
).
5.
G. B.
Beneventi
,
L.
Perniola
,
V.
Sousa
,
E.
Gourvest
,
S.
Maitrejean
,
J. C.
Bastien
,
A.
Bastard
,
B.
Hyot
,
A.
Fargeix
,
C.
Jahan
, and
J. F.
Nodin
, “
Carbon-doped GeTe: A promising material for phase-change memories
,”
Solid-State Electron.
65
,
197
204
(
2011
).
6.
S.
Tyson
,
G.
Wicker
,
T.
Lowrey
,
S.
Hudgens
, and
K.
Hunt
, “Nonvolatile, high density, high performance phase-change memory,” in 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484) (IEEE, 2000), Vol. 5, pp. 385–390.
7.
F.
Pellizzer
,
A.
Pirovano
,
F.
Ottogalli
,
M.
Magistretti
,
M.
Scaravaggi
,
P.
Zuliani
,
M.
Tosi
,
A.
Benvenuti
,
P.
Besana
,
S.
Cadeo
, and
T.
Marangon
, “Novel/spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications,” in Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004 (IEEE, 2004), pp. 18–19.
8.
B.
Yu
,
X.
Sun
,
S.
Ju
,
D. B.
Janes
, and
M.
Meyyappan
, “
Chalcogenide-nanowire-based phase change memory
,”
IEEE Trans. Nanotechnol.
7
(
4
),
496
502
(
2008
).
9.
F.
Xiong
,
M.
Bae
,
Y.
Dai
,
A. D.
Liao
,
A.
Behnam
,
E. A.
Carrion
,
S.
Hong
,
D.
Ielmini
, and
E.
Pop
, “
Self-aligned nanotube–nanowire phase change memory
,”
Nano Lett.
13
(
2
),
464
469
(
2013
).
10.
M.
Longo
,
R.
Fallica
,
C.
Wiemer
,
O.
Salicio
,
M.
Fanciulli
,
E.
Rotunno
, and
L.
Lazzarini
, “
Metal organic chemical vapor deposition of phase change Ge 1Sb 2Te 4 nanowires
,”
Nano Lett.
12
(
3
),
1509
1515
(
2012
).
11.
R. E.
Simpson
,
P.
Fons
,
A. V.
Kolobov
,
T.
Fukaya
,
M.
Krbal
,
T.
Yagi
, and
J.
Tominaga
, “
Interfacial phase-change memory
,”
Nat. Nanotechnol.
6
(
8
),
501
505
(
2011
).
12.
J.-L.
Battaglia
,
A.
Kusiak
,
V.
Schick
,
A.
Cappella
,
C.
Wiemer
,
M.
Longo
, and
E.
Varesi
, “
Thermal characterization of the SiO 2-Ge 2Sb 2Te 5 interface from room temperature up to 400 °C
,”
J. Appl. Phys.
107
(
4
),
044314
(
2010
).
13.
V.
Sousa
,
G.
Navarro
,
N.
Castellani
,
M.
Coue
,
O.
Cueto
,
C.
Sabbione
,
P.
Noe
,
L.
Perniola
,
S.
Blonkowski
,
P.
Zuliani
, and
R.
Annunziata
, “Operation fundamentals in 12Mb phase change memory based on innovative Ge-rich GST materials featuring high reliability performance,” in 2015 Symposium on VLSI Technology (VLSI Technology) (IEEE, 2015), pp. T98–T99.
14.
L.
Prazakova
,
E.
Nolot
,
E.
Martinez
,
F.
Fillot
,
D.
Rouchon
,
N.
Rochat
,
M.
Bernard
,
C.
Sabbione
,
D.
Morel
,
N.
Bernier
, and
A.
Grenier
, “
Temperature driven structural evolution of Ge-rich GeSbTe alloys and role of N-doping
,”
J. Appl. Phys.
128
(
21
),
215102
(
2020
).
15.
G.
Navarro
,
V.
Sousa
,
P.
Noé
,
N.
Castellani
,
M.
Coué
,
J.
Kluge
,
A.
Kiouseloglou
,
C.
Sabbione
,
A.
Persico
,
A.
Roule
, and
O.
Cueto
, “N-doping impact in optimized Ge-rich materials based phase-change memory,” in 2016 IEEE 8th International Memory Workshop (IMW) (IEEE, 2016), pp. 1–4.
16.
D.
Maillet
,
S.
Andre
, J. Batsale, A. Degiovanni, and C. Moyne, Thermal Quadrupoles: Solving the Heat Equation Through Integral Transforms (Wiley, 2000).
17.
A.
Degiovanni
,
C.
Pradere
,
E.
Ruffio
, and
J.-L.
Battaglia
, “
Advanced thermal impedance network for the heat diffusion with sources
,”
Int. J. Therm. Sci.
130
,
518
524
(
2018
).
18.
A. J.
Griffin Jr
,
F. R.
Brotzen
, and
P. J.
Loos
, “
The effective transverse thermal conductivity of amorphous Si 3N 4 thin films
,”
J. Appl. Phys.
76
(
7
),
4007
4011
(
1994
).
19.
A.
Kusiak
,
C.
Chassain
,
A. M.
Canseco
,
K.
Ghosh
,
M.-C.
Cyrille
,
A. L.
Serra
,
G.
Navarro
,
M.
Bernard
,
N.-P.
Tran
, and
J.-L.
Battaglia
, “
Temperature-dependent thermal conductivity and interfacial resistance of Ge-Rich Ge 2Sb 2Te 5 films and multilayers
,”
Physica Status Solidi (RRL)
16
(
4
),
2100507
(
2022
).
20.
M. W.
Barsoum
,
C. J.
Rawn
,
T.
El-Raghy
,
A. T.
Procopio
,
W. D.
Porter
,
H.
Wang
, and
C. R.
Hubbard
, “
Thermal properties of Ti 4AlN 3
,”
J. Appl. Phys.
87
(
12
),
8407
8414
(
2000
).
21.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
(
3
),
605
(
1989
).
22.
D. W.
Mardquardt
, “
An algorithm for least square estimation of parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
23.
D. D.
Morrison
, “Methods for nonlinear least squares problems and convergence proofs,” in JPL Seminar Proceedings on Tracking Programs and Orbit Determination, 26 February 1960 (1960), see https://ntrs.nasa.gov/citations/19690071284.
24.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
(
2
),
164
168
(
1944
).
25.
M.
Först
,
T.
Dekorsy
,
C.
Trappe
,
M.
Laurenzis
,
H.
Kurz
, and
B.
Béchevet
, “
Phase change in Ge 2Sb 2Te 5 films investigated by coherent phonon spectroscopy
,”
Appl. Phys. Lett.
77
(
13
),
1964
1966
(
2000
).
26.
D. A.
Baker
,
M. A.
Paesler
,
G.
Lucovsky
,
S. C.
Agarwal
, and
P. C.
Taylor
, “
Application of bond constraint theory to the switchable optical memory material Ge 2Sb 2Te 5
,”
Phys. Rev. Lett.
96
(
25
),
255501
(
2006
).
27.
K. S.
Andrikopoulos
,
S. N.
Yannopoulos
,
G. A.
Voyiatzis
,
A. V.
Kolobov
,
M.
Ribes
, and
J.
Tominaga
, “
Raman scattering study of the a GeTe structure and possible mechanism for the amorphous to crystal transition
,”
J. Phys.: Condens. Matter.
18
(
3
),
965
(
2006
).
28.
K. S.
Andrikopoulos
,
S. N.
Yannopoulos
,
A. V.
Kolobov
,
P.
Fons
, and
J.
Tominaga
, “
Raman scattering study of GeTe and Ge 2Sb 2Te 5 phase-change materials
,”
J. Phys. Chem. Solids
68
(
5-6
),
1074
1078
(
2007
).
29.
P.
Jóvári
,
I.
Kaban
,
J.
Steiner
,
B.
Beuneu
,
A.
Schöps
, and
A.
Webb
, “
‘Wrong bonds’ in sputtered amorphous Ge 2Sb 2Te 5
,”
J. Phys.: Condens. Matter.
19
(
33
),
335212
(
2007
).
30.
P.
Jóvári
,
I.
Kaban
,
J.
Steiner
,
B.
Beuneu
,
A.
Schöps
, and
M. A.
Webb
, “
Local order in amorphous Ge 2Sb 2Te 5 and GeSb 2Te 4
,”
Phys. Rev. B
77
(
3
),
035202
(
2008
).
31.
R.
De Bastiani
,
A. M.
Piro
,
M. G.
Grimaldi
,
E.
Rimini
,
G. A.
Baratta
, and
G.
Strazzulla
, “
Ion irradiation-induced local structural changes in amorphous Ge 2Sb 2Te 5 thin film
,”
Appl. Phys. Lett.
92
(
24
),
241925
(
2008
).
32.
P.
Němec
,
V.
Nazabal
,
A.
Moréac
,
J.
Gutwirth
,
L.
Beneš
, and
M.
Frumar
, “
Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy
,”
Mater. Chem. Phys.
136
(
2–3
),
935
941
(
2012
).
33.
L.
Prazakova
,
E.
Nolot
,
E.
Martinez
,
D.
Rouchon
,
F.
Fillot
,
N.
Bernier
,
R.
Elizalde
,
M.
Bernard
, and
G.
Navarro
, “
The effect of Ge content on structural evolution of Ge-rich GeSbTe alloys at increasing temperature
,”
Materialia
21
,
101345
(
2022
).
34.
S.
Caravati
,
M.
Bernasconi
,
T. D.
Kühne
,
M.
Krack
, and
M.
Parrinello
, “
Coexistence of tetrahedral-and octahedral-like sites in amorphous phase change materials
,”
Appl. Phys. Lett.
91
(
17
),
171906
(
2007
).
35.
R.
Mazzarello
,
S.
Caravati
,
S.
Angioletti-Uberti
,
M.
Bernasconi
, and
M.
Parrinello
, “
Erratum: Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials [Phys. Rev. Lett. 104, 085503 (2010)]
,”
Phys. Rev. Lett.
107
(
3
),
039902
(
2011
).
36.
G. C.
Sosso
,
S.
Caravati
,
R.
Mazzarello
, and
M.
Bernasconi
, “
Raman spectra of cubic and amorphous Ge 2Sb 2Te 5 from first principles
,”
Phys. Rev. B
83
(
13
),
134201
(
2011
).
37.
S.
Sugai
, “
Stochastic random network model in Ge and Si chalcogenide glasses
,”
Phys. Rev. B
35
(
3
),
1345
(
1987
).
38.
J.
Tominaga
and
N.
Atoda
, “
Study of the crystallization of GeSbTe films by Raman spectroscopy
,”
Jpn. J. Appl. Phys.
38
(
3B
),
L322
(
1999
).
39.
L.
Bo
,
S.
Zhi-Tang
,
Z.
Ting
,
F.
Song-Lin
, and
C.
Bomy
, “
Raman spectra and XPS studies of phase changes in Ge 2Sb 2Te 5 films
,”
Chin. Phys.
13
(
11
),
1947
(
2004
).
40.
H.
Satoh
,
K.
Sugawara
, and
K.
Tanaka
, “
Nanoscale phase changes in crystalline Ge 2Sb 2Te 5 films using scanning probe microscopes
,”
J. Appl. Phys.
99
(
2
),
024306
(
2006
).
41.
S. J.
Park
,
M. H.
Jang
,
S.-J.
Park
,
M.-H.
Cho
, and
D.-H.
Ko
, “
Characteristics of phase transition and separation in a In–Ge–Sb–Te system
,”
Appl. Surf. Sci.
258
(
24
),
9786
9791
(
2012
).
42.
G.
Lucovsky
,
D. A.
Baker
,
M. A.
Paesler
, and
J. C.
Phillips
, “
Spectroscopic and electrical detection of intermediate phases and chemical bonding self-organizations in (i) dielectric films for semiconductor devices, and (ii) chalcogenide alloys for optical memory devices
,”
J. Non-Cryst. Solids
353
(
18-21
),
1713
1722
(
2007
).
43.
S.
Grosso
, “Revêtements architecturés de Ti, TiN et TiO élaborés par pulvérisation cathodique au défilé sur des fils en acier inoxydable: relation entre la composition chimique, la microstructure et les propriétés d’usage,” Ph.D. thesis (Université Grenoble Alpes, 2017).
44.
E.
Rahier
,
S.
Ran
,
N.
Ratel Ramond
,
S.
Ma
,
L.
Calmels
,
S.
Saha
,
C.
Mocuta
,
D.
Benoit
,
Y.
Le Friec
,
M. A.
Luong
, and
A.
Claverie
, “
Crystallization of Ge-Rich GeSbTe alloys: The riddle is solved
,”
ACS Appl. Electron. Mater.
4
(
6
),
2682
2688
(
2022
).
45.
R. E.
Simpson
,
M.
Krbal
,
P.
Fons
,
A. V.
Kolobov
,
J.
Tominaga
,
T.
Uruga
, and
H.
Tanida
, “
Toward the ultimate limit of phase change in Ge 2Sb 2Te 5
,”
Nano Lett.
10
(
2
),
414
419
(
2010
).
46.
A.
Redaelli
, “Self-consistent numerical model,” Phase Change Memory: Device Physics, Reliability and Applications (Springer, 2018), pp. 65–88.
47.
M. A.
Luong
,
S.
Ran
,
M.
Bernard
, and
A.
Claverie
, “
An experimental study of Ge diffusion through Ge 2Sb 2Te 5
,”
Mater. Sci. Semicond. Process.
152
,
107101
(
2022
).
48.
E. F.
Steigmeier
and
G.
Harbeke
, “
Soft phonon mode and ferroelectricity in GeTe
,”
Solid State Commun.
8
(
16
),
1275
1279
(
1970
).
49.
K.
Aryana
,
J. T.
Gaskins
,
J.
Nag
,
D. A.
Stewart
,
Z.
Bai
,
S.
Mukhopadhyay
,
J. C.
Read
,
D. H.
Olson
,
E. R.
Hoglund
,
J. M.
Howe
, and
A.
Giri
, “
Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
,”
Nat. Commun.
12
(
1
),
774
(
2021
).
50.
S. A.
Baily
,
D.
Emin
, and
H.
Li
, “
Hall mobility of amorphous Ge 2Sb 2Te 5
,”
Solid State Commun.
139
(
4
),
161
164
(
2006
).
51.
J. F.
Shackelford
and
W.
Alexander
,
CRC Materials Science and Engineering Handbook
(
CRC Press
,
2000
).
52.
H.-K.
Lyeo
,
D. G.
Cahill
,
B.-S.
Lee
,
J. R.
Abelson
,
M.-H.
Kwon
,
K.-B.
Kim
,
S. G.
Bishop
, and
B.-K.
Cheong
, “
Thermal conductivity of phase-change material Ge 2Sb 2Te 5
,”
Appl. Phys. Lett.
89
(
15
),
151904
(
2006
).
You do not currently have access to this content.