Polarization plays a crucial role in understanding the interaction of fluorescent molecules in a light field. We report the study on the effect of a field–dipole interaction under polarization light-sheet fluorescence microscopy using the vectorial theory of light. The molecule is suitably modeled as a radiating electric dipole in a polarized electric field (both linear and random), and the system point spread function (PSF) is determined for different orientations of the dipole (both fixed and random). PSF analysis and contour plots suggest distinct nature of a field distribution in each case, indicating the importance of a field–dipole interaction for high-quality fluorescence imaging. The analysis suggests that the field spreads gradually along the polarization axis at a high numerical aperture (NA) of the objective lens, whereas it is more isotropic and homogeneous at low NA. Moreover, fast changes are not observed at low NA (i.e., far from the central lobe in the field contour plots), suggesting the absence of high-frequency components. However, sidelobes are prominent for linear polarized (along x) light. On the other hand, rapid variations are evident for randomly polarized light, depicting the presence of high spatial frequencies in the system optical transfer function. The other significant observation is the distinct frequency spectrum (both k x and k y) for random and fixed dipoles, indicating the significance of dipole orientation in a light-sheet field. Compared to the point-illumination-based fluorescence microscopy, sheet based polarization technique provides a high signal-to-noise ratio, a uniform field, an order large field of view, and critical information (related to the micro-environment of a dipole and its short-range interactions). The study is expected to facilitate polarization-sensitive investigation of large biological specimens (both fixed and live).

1.
P. P.
Mondal
,
Appl. Phys. Lett.
119
,
160502
(
2021
).
2.
J.
Huisken
,
J.
Swoger
,
F.
Del Bene
,
J.
Wittbrodt
, and
E. H. K.
Stelzer
,
Science
305
,
1007
1009
(
2004
).
3.
C. J.
Engelbrecht
and
E. H. K.
Stelzer
,
Opt. Lett.
31
,
1477
1479
(
2006
).
5.
H. R.
Ueda
,
H.-U.
Dodt
,
P.
Osten
et al.,
Neuron
106
,
369
387
(
2020
).
6.
C.
Fang
,
T.
Yu
,
T.
Chu
et al.,
Nat. Commun.
12
,
107
(
2021
).
7.
J.
Basumatary
,
T.
Ara
,
A.
Mukherjee
et al.,
Sci. Rep.
11
,
7616
(
2021
).
8.
A.
Candeo
,
F. G.
Doccula
,
G.
Valentini
,
A.
Bassi
, and
A.
Costa
,
Plant Cell Physiol.
58
,
1161
1172
(
2017
).
9.
P. P.
Mondal
,
N.
Baro
,
A.
Singh
,
P.
Joshi
, and
J.
Basumatary
,
Sci. Rep.
12
,
10229
(
2022
).
10.
P.
Kumar
,
P.
Joshi
,
J.
Basumatary
, and
P. P.
Mondal
,
Sci. Rep.
12
,
78
(
2022
).
11.
K.
Mohan
and
P. P.
Mondal
,
OSA Contin.
3
,
668
675
(
2020
).
12.
B.
Richards
and
E.
Wolf
, “
Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system
,”
Proc. R. Soc. A
253
,
349
357
(
1959
).
13.
H. T. M.
Van der Voort
and
G. J.
Brakenhoff
, “
3-D image formation high in aperture fluorescence confocal microscopy
,”
J. Microsc.
158
,
43
54
(
1990
).
14.
T. D.
Visser
and
S. H.
Wiersma
, “
Electromagnetic description of image formation in confocal fluorescence microscopy
,”
J. Opt. Soc. Am. A
11
,
599
608
(
1994
).
15.
S.
Hell
and
E. H. K.
Stelzer
, “
Properties of a 4Pi-confocal fluorescence microscope
,”
J. Opt. Soc. Am. A
9
,
2159
2166
(
1992
).
16.
C. J. R.
Sheppard
and
P.
Török
, “
An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy
,”
Bioimaging
5
,
205
218
(
1997
).
17.
D.
Axelrod
, “
Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization
,”
Biophys. J.
26
,
557
573
(
1979
).
18.
A.
Entwistle
and
M.
Noble
, “
The use of polarization analysis in the quantification of fluorescent emission: General principles
,”
J. Microsc.
165
,
331
346
(
1992
).
19.
J. R.
Lakowicz
,
I.
Gryczynski
,
Z.
Gryczynski
,
E.
Danielsen
, and
M. J.
Wirth
, “
Time-resolved fluorescence intensity and anisotropy decays of 2,5-diphenyloxazole by two-photon excitation and frequency-domain fluorometry
,”
J. Phys. Chem.
96
,
3000
3006
(
1992
).
20.
I.
Gryczynski
,
H.
Malak
, and
J. R.
Lakowicz
, “
Three-photon excitation of p-quaterphenyl with a mode-locked femtosecond Ti:sapphire laser
,”
J. Fluoresc.
6
,
139
145
(
1996
).
21.
K.
Zhanghao
,
X.
Chen
,
W.
Liu
et al., “
Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy
,”
Nat. Commun.
10
,
4694
(
2019
).
22.
D. Y.
Shroder
,
L. G.
Lippert
, and
Y. E.
Goldman
, “
Single molecule optical measurements of orientation and rotations of biological macromolecules
,”
Methods Appl. Fluoresc.
4
,
042004
(
2016
).
23.
K.
Zhanghao
,
J.
Gao
,
D.
Jin
,
X.
Zhang
, and
P.
Xi
, “
Super-resolution fluorescence polarization microscopy
,”
J. Innov. Opt. Health Sci.
11
,
1730002
(
2017
).
24.
A. H.
Voie
,
D. H.
Burns
, and
F. A.
Spelman
,
J. Microsc.
170
,
229
236
(
1993
).
25.
H.
Siedentopf
and
R. A.
Zsigmondy
,
Ann. Phys.
10
,
1
39
(
1903
).
26.
A.
Kumar
,
Y.
Wu
,
R.
Christensen
et al.,
Nat. Protoc.
9
,
2555
2573
(
2014
).
27.
H. U.
Dodt
,
U.
Leischner
,
A.
Schierloh
et al.,
Nat. Methods
4
,
331
(
2007
).
28.
T. F.
Holekamp
,
D.
Turaga
, and
T. E.
Holy
,
Neuron
57
,
661
(
2008
).
29.
L.
Silvestri
,
A.
Bria
,
L.
Sacconi
,
G.
Iannello
, and
F. S.
Pavone
,
Opt. Express
20
,
20582
(
2012
).
30.
K.
Mohan
,
S. B.
Purnapatra
, and
P. P.
Mondal
,
PLoS One
9
,
e96551
(
2014
).
31.
B.
Migliori
,
M. S.
Datta
,
C.
Dupre
et al.,
BMC Biol.
16
,
57
(
2018
).
32.
A.
Kumar
,
Y.
Wu
,
R.
Christensen
et al.,
Nat. Protoc.
9
,
2555
2573
(
2014
).
33.
B. C.
Chen
,
W. R.
Legant
,
K.
Wang
et al.,
Science
346
,
1257998
(
2014
).
34.
C. J. R.
Sheppard
and
P.
Török
,
Bioimaging
5
,
205
218
(
2001
).
35.
S. B.
Purnapatra
and
P. P.
Mondal
,
AIP Adv.
3
,
052124
(
2013
).
36.
A.
Boivin
and
E.
Wolf
,
Phys. Rev.
138
,
B1561
(
1965
).
37.
S.
Hell
and
E. H. K.
Stelzer
,
Opt. Commun.
93
,
277
282
(
1992
).
38.
P. P.
Mondal
,
Book: Light Sheet Microscopy and Imaging
(
AIP Publishing
,
USA
,
2021
).
39.
E. H. K.
Stelzer
,
F.
Strobl
,
B. J.
Chang
et al., “
Light sheet fluorescence microscopy
,”
Nat. Rev. Methods Primers
1
,
73
(
2021
).
40.
G.
Vicidomini
,
P. P.
Mondal
, and
A.
Diaspro
,
Opt. Lett.
31
,
3582
3584
(
2006
).
41.
P. P.
Mondal
,
G.
Vicidomini
, and
A.
Diaspro
,
Appl. Phys. Lett.
92
,
103902
(
2008
).
43.
R.
Schmidt
,
T.
Weihs
,
C. A.
Wurm
et al.,
Nat. Commun.
12
,
1478
(
2021
).
44.
C. J.
Engelbrecht
and
E. H. K.
Stelzer
,
Opt. Lett.
31
,
1477
1479
(
2006
).
45.
M. B.
Ahrens
,
M. B.
Orger
,
D. N.
Robson
,
J. M.
Li
, and
P. J.
Keller
,
Nat. Methods
10
,
413
420
(
2013
).
46.
F. C.
Zanacchi
,
Z.
Lavagnino
,
M. P.
Donnorso
et al.,
Nat. Methods
8
,
1047
1049
(
2011
).
47.
C. K.
Rasmi
,
K.
Mohan
,
M.
Madhangi
et al.,
Appl. Phys. Lett.
111
,
243702
(
2017
).
48.
C. K.
Rasmi
,
K.
Mohan
,
M.
Madhangi
et al.,
Appl. Phys. Lett.
107
,
263701
(
2015
).
49.
K.
Khairy
,
W. C.
Lemon
,
F.
Amat
et al.,
Methods Mol. Biol.
1189
,
79
97
(
2015
).
You do not currently have access to this content.