In this paper, we show that by extending the concept of “microsphere-assisted imaging” into thermal lens (TL) detection, enhancement of photothermal detection is achieved. Furthermore, by integration of TL detection and digital holographic microscopy (DHM), we provide simultaneous measurement of photothermal properties as well as complementary imaging of the sample. Simultaneous acquisition of photothermal properties and imaging is essential for characterization of a variety of samples in biochemistry, material science, and process technologies. TL is a sensitive methodology to detect low concentrations of analytes in low-loss samples, and DHM in the transmission mode is an effective technique for label-free, non-contact, and real-time imaging and measurement of phase objects, such as biomaterials. We demonstrate the usefulness of the TL-DHM integrated system by applying it for acquisition of photothermal maps of samples as well as obtaining their morphometrical information. Additionally, we measure the thermal diffusivity of polydimethylsiloxane because of the focusing effect of polystyrene microspheres. The system has the potential to be applied for a variety of objects including bio-samples and may be proposed as a bench-top characterization device.

1.
A.
Darafsheh
, “
Microsphere-assisted microscopy
,”
J. Appl. Phys.
131
,
031102
(
2022
).
2.
L.
Chen
,
Y.
Zhou
,
Z.
Rui
, and
M.
Hong
, “
Microsphere-towards future of optical microscopes
,”
iScience
23
(6),
101211
(
2020
).
3.
S.
Perrin
,
H.
Li
,
K.
Badu
,
T.
Comparon
,
G.
Quaranta
,
N.
Messaddeq
,
N.
Lemercier
,
P.
Montgomery
,
J.-L.
Vonesch
, and
S.
Lecler
, “
Transmission microsphere-assisted dark-field microscopy
,”
Phys. Status Solidi RRL
13
,
1800445
(
2019
).
4.
V.
Abbasian
and
A.-R.
Moradi
, “
Microsphere-assisted super-resolved mueller matrix microscopy
,”
Opt. Lett.
45
,
4336
4339
(
2020
).
5.
Y.
Yan
,
L.
Li
,
C.
Feng
,
W.
Guo
,
S.
Lee
, and
M.
Hong
, “
Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum
,”
ACS Nano
8
,
1809
1816
(
2014
).
6.
V.
Gašparić
,
D.
Ristić
,
H.
Gebavi
, and
M.
Ivanda
, “
Resolution and signal enhancement of Raman mapping by photonic nanojet of a microsphere
,”
Appl. Surf. Sci.
545
,
149036
(
2021
).
7.
M.
Aakhte
,
V.
Abbasian
,
E. A.
Akhlaghi
,
A.-R.
Moradi
,
A.
Anand
, and
B.
Javidi
, “
Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification
,”
Appl. Opt.
56
,
D8
D13
(
2017
).
8.
V.
Abbasian
,
S.
Rasouli
, and
A.-R.
Moradi
, “
Microsphere-assisted self-referencing digital holographic microscopy in transmission mode
,”
J. Opt.
21
,
045301
(
2019
).
9.
V.
Abbasian
,
Y.
Ganjkhani
,
E. A.
Akhlaghi
,
A.
Anand
,
B.
Javidi
, and
A.-R.
Moradi
, “
Super-resolved microsphere-assisted Mirau digital holography by oblique illumination
,”
J. Opt.
20
,
065301
(
2018
).
10.
Z.
Xie
,
S.
Hu
,
Y.
Tang
,
X.
Liu
,
J.
Liu
, and
Y.
He
, “
3D super-resolution reconstruction using microsphere-assisted structured illumination microscopy
,”
IEEE Photonics Technol. Lett.
31
,
1783
1786
(
2019
).
11.
H.
Cabrera
,
D.
Korte
, and
M.
Franko
, “
Mode-mismatched confocal thermal-lens microscope with collimated probe beam
,”
Rev. Sci. Instrum.
86
,
053701
(
2015
).
12.
M.
Mahdieh
and
M. A.
Jafarabadi
, “
Optical characterization of thermal lens effect in ethanol and the influence of focusing lens and liquid cell size
,”
Opt. Laser Technol.
44
,
78
82
(
2012
).
13.
H.
Cabrera
,
L.
Goljat
,
D.
Korte
,
E.
Marín
, and
M.
Franko
, “
A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry
,”
Anal. Chim. Acta
1100
,
182
190
(
2020
).
14.
B. A. N.
Asbaghi
,
A.
Alsadig
,
L.
Casalis
,
P.
Parisse
,
J.
Niemela
,
S.
Bellucci
, and
H.
Cabrera
, “
An electrophoresis approach with online thermal lens detection to monitoring DNA surface coatings on gold nanoparticles
,”
Microchem. J.
173
,
106961
(
2022
).
15.
M. K.
Kim
, “
Principles and techniques of digital holographic microscopy
,”
SPIE Rev.
1
,
018005
(
2010
).
16.
L.
Miccio
,
P.
Memmolo
,
F.
Merola
,
P.
Netti
, and
P.
Ferraro
, “
Red blood cell as an adaptive optofluidic microlens
,”
Nat. Commun.
6
,
1
7
(
2015
).
17.
M. K.
Kim
, “Digital holographic microscopy,” in Digital Holographic Microscopy (Springer, 2011), pp. 149–190.
18.
V. F.
Rad
and
A.-R.
Moradi
, “
Flat wall proximity effect on micro-particle sedimentation in non-Newtonian fluids
,”
Sci. Rep.
10
(1),
2741
(
2020
).
19.
P.
Asgari
,
Y.
Pourvais
,
P.
Abdollahi
,
A.
Moradi
,
R.
Khamedi
, and
A.
Darudi
, “
Digital holographic microscopy as a new technique for quantitative measurement of microstructural corrosion in austenitic stainless steel
,”
Mater. Des.
125
,
109
115
(
2017
).
20.
B.
Gutmann
and
H.
Weber
, “
Phase unwrapping with the branch-cut method: Role of phase-field direction
,”
Appl. Opt.
39
,
4802
4816
(
2000
).
21.
X.
Yu
,
J.
Hong
,
C.
Liu
, and
M. K.
Kim
, “
Review of digital holographic microscopy for three-dimensional profiling and tracking
,”
Opt. Eng.
53
,
112306
(
2014
).
22.
P.
Marquet
,
B.
Rappaz
,
P. J.
Magistretti
,
E.
Cuche
,
Y.
Emery
,
T.
Colomb
, and
C.
Depeursinge
, “
Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy
,”
Opt. Lett.
30
,
468
470
(
2005
).
23.
V.
Farzam Rad
,
R.
Tavakkoli
,
A.-R.
Moradi
,
A.
Anand
, and
B.
Javidi
, “
Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy
,”
Appl. Phys. Lett.
111
,
083701
(
2017
).
24.
P.
Memmolo
,
L.
Miccio
,
F.
Merola
,
O.
Gennari
,
P. A.
Netti
, and
P.
Ferraro
, “
3D morphometry of red blood cells by digital holography
,”
Cytometry, Part A
85
,
1030
1036
(
2014
).
25.
X.
Chen
,
H.
Li
,
T.
Wu
,
Z.
Gong
,
J.
Guo
,
Y.
Li
,
B.
Li
,
P.
Ferraro
, and
Y.
Zhang
, “
Optical-force-controlled red-blood-cell microlenses for subwavelength trapping and imaging
,”
Biomed. Opt. Express
13
,
2995
3004
(
2022
).
26.
A.
Darafsheh
,
G. F.
Walsh
,
L.
Dal Negro
, and
V. N.
Astratov
, “
Optical super-resolution by high-index liquid-immersed microspheres
,”
Appl. Phys. Lett.
101
,
141128
(
2012
).
27.
Z.
Wang
,
W.
Guo
,
L.
Li
,
B.
Luk’yanchuk
,
A.
Khan
,
Z.
Liu
,
Z.
Chen
, and
M.
Hong
, “
Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope
,”
Nat. Commun.
2
,
218
(
2011
).
28.
A.
Marcano
,
H.
Cabrera
,
M.
Guerra
,
R. A.
Cruz
,
C.
Jacinto
, and
T.
Catunda
, “
Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement
,”
J. Opt. Soc. Am. B
23
,
1408
1413
(
2006
).
29.
J.
Brandrup
,
E. H.
Immergut
,
E. A.
Grulke
,
A.
Abe
, and
D. R.
Bloch
,
Polymer Handbook
(
Wiley, New York
,
1999
), Vol. 89.
30.
L.
Chen
,
Y.
Zhou
,
Y.
Li
, and
M.
Hong
, “
Microsphere enhanced optical imaging and patterning: From physics to applications
,”
Appl. Phys. Rev.
6
,
021304
(
2019
).
31.
V.
Astratov
,
Label-Free Super-Resolution Microscopy
(
Springer
,
2019
).
32.
X.
Huang
,
X.
He
,
W.
Xiong
,
Y.
Gao
,
L.
Jiang
,
L.
Liu
,
Y.
Zhou
,
L.
Jiang
,
J.
Silvain
, and
Y.
Lu
, “
Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging
,”
Opt. Express
22
,
2889
2896
(
2014
).
You do not currently have access to this content.