Thermal conductivity κ(T) of single-crystal CVD diamond lightly doped (about 3 ppm) with nitrogen has been measured at temperatures from 5.7 to 410 K. The sample was carefully characterized by optical absorption and photoluminescence spectroscopy for the presence of impurities. Nine different optically active defects related with nitrogen, hydrogen, and silicon impurities have been identified and quantified. This pink-tint crystal showed a high thermal conductivity of 24.0±0.5 W cm1 K1 at room temperature, which is very close to the highest value ever measured at about 25 W cm1 K1 for diamonds of natural isotopic composition. At the same time, the κ(T) of the crystal showed strong suppression >10% at temperatures 6<T<120 K with a maximum decrease of 2.7 times at 40 K compared to high purity diamonds. This behavior of the conductivity is attributed to a phonon scattering by charge carriers bound to nitrogen-related impurity centers, which is ineffective, however, at room and higher temperatures. The κ(T) has been calculated within the model based on the Callaway theory taking into account the elastic phonon scattering off charge carriers (holes and electrons) in the ground states of doping centers, and a very good agreement between the measured and theoretical data has been achieved. The model also gives a good approximation to the experimental data for κ(T) given in the literature for synthetic and natural single-crystal diamonds.

1.
D. T.
Morelli
, “Thermal conductivity of diamond,” in Chemistry and Physics of Carbon, edited by P. A. Thrower (Marcel Dekker, Inc., New York, 1992), Vol. 24, Chap. 2, pp. 45–109.
2.
J. E.
Graebner
, “Thermal conductivity of diamond,” in Diamond: Electronic Properties and Applications, edited by L. S. Pan and D. R. Kania (Springer Science, New York, 1995), Chap. 7, pp. 285–318.
3.
V. I.
Nepsha
, “Heat capacity, conductivity, and the thermal coefficient of expansion,” in Handbook of Industrial Diamonds and Diamond Films, edited by M. A. Prelas, G. Popovichi, and L. K. Bigelow (Marcel Dekker, Inc., New York, 1997), Chap. 5, pp. 147–192.
4.
G. A.
Slack
, “
Nonmetallic crystals with high thermal conductivity
,”
J. Phys. Chem. Solids
34
,
321
335
(
1973
).
5.
G. P.
Srivastava
, “Lattice thermal conduction mechanism in solids,” in High Thermal Conductivity Materials, edited by S. L. Shinde and J. S. Goela (Springer, New York, 2006), Chap. 1, pp. 1–35.
6.
A.
Ward
,
D. A.
Broido
,
D. A.
Stewart
, and
G.
Deinzer
, “
Ab initio theory of the lattice thermal conductivity in diamond
,”
Phys. Rev. B
80
,
125203
(
2009
).
7.
L. A.
Turk
and
P. G.
Klemens
, “
Phonon scattreing by impurity platelet precipitates in diamond
,”
Phys. Rev. B
9
,
4422
4428
(
1974
).
8.
R.
Berman
,
P. R. W.
Hudson
, and
M.
Martinez
, “
Nitrogen in diamond: Evidence from thermal conductivity
,”
J. Phys. C
8
,
L430
L434
(
1975
).
9.
R.
Berman
and
M.
Martinez
, “The thermal conductivity of diamonds,” in Diamond Research (Industrial Diamond Information Bureau, London, 1976), pp. 7–13.
10.
V. I.
Nepsha
,
V. R.
Grinberg
,
Y. A.
Klyuev
,
A. M.
Naletov
, and
G. B.
Bokii
, “
Effect of 13C isotopes on the diamond thermal conduction in the approximation of the dominant role of normal phonon-scattering processes
,”
Dokl. Akad. Nauk SSSR
317
,
96
97
(
1991
).
11.
R.
Berman
, “
Thermal conductivity of isotopically enriched diamonds
,”
Phys. Rev. B
45
,
5726
5728
(
1992
).
12.
K. C.
Hass
,
M. A.
Tamor
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Lattice dynamics and Raman spectra of isotopically mixed diamond
,”
Phys. Rev. B
45
,
7171
7182
(
1992
).
13.
D. G.
Onn
,
A.
Witek
,
Y. Z.
Qiu
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Some aspects of the thermal conductivity of isotopically enriched diamond single crystals
,”
Phys. Rev. Lett.
68
,
2806
2809
(
1992
).
14.
J. R.
Olson
,
R. O.
Pohl
,
J. W.
Vandersande
,
A.
Zoltan
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Thermal conductivity of diamond between 170 and 1200 K and the isotope effect
,”
Phys. Rev. B
47
,
14850
14856
(
1993
).
15.
L.
Wei
,
P. K.
Kuo
,
R. L.
Thomas
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Thermal conductivity of isotopically modified single crystal diamond
,”
Phys. Rev. Lett.
70
,
3764
3767
(
1993
).
16.
Y.-J.
Han
and
H.-B.
Chae
, “
Theoretical analysis of the thermal conductivity of diamond in a two-step model
,”
Phys. Rev. B
52
,
27
30
(
1995
).
17.
D. T.
Morelli
,
J. P.
Heremans
, and
G. A.
Slack
, “
Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
,”
Phys. Rev. B
66
,
195304
(
2002
).
18.
S.
Barman
and
G. P.
Srivastava
, “
Temperature dependence of the thermal conductivity of different forms of diamond
,”
J. Appl. Phys.
101
,
123507
(
2007
).
19.
A. V.
Inyushkin
,
A. N.
Taldenkov
,
V. G.
Ralchenko
,
A. P.
Bolshakov
,
A. V.
Koliadin
, and
A. N.
Katrusha
, “
Thermal conductivity of high purity synthetic single crystal diamonds
,”
Phys. Rev. B
97
,
144305
(
2018
).
20.
A.
Sparavigna
, “
Influence of isotope scattering on the thermal conductivity of diamond
,”
Phys. Rev. B
65
,
064305
(
2002
).
21.
D. A.
Broido
,
L.
Lindsay
, and
A.
Ward
, “
Thermal conductivity of diamond under extreme pressure: A first-principles study
,”
Phys. Rev. B
86
,
115203
(
2012
).
22.
L.
Chaput
, “
Direct solution to the linearized phonon Boltzmann equation
,”
Phys. Rev. Lett.
110
,
265506
(
2013
).
23.
G.
Fugallo
,
M.
Lazzeri
,
L.
Paulatto
, and
F.
Mauri
, “
Ab initio variational approach for evaluating lattice thermal conductivity
,”
Phys. Rev. B
88
,
045430
(
2013
).
24.
J.
Ma
,
W.
Li
, and
X.
Luo
, “
Examining the callaway model for lattice thermal conductivity
,”
Phys. Rev. B
90
,
035203
(
2014
).
25.
F. Q.
Wang
,
M.
Hu
, and
Q.
Wang
, “
Ultrahigh thermal conductivity of carbon allotropes with correlations with the scaled Pugh ratio
,”
J. Mater. Chem. A
7
,
6259
6266
(
2019
).
26.
P.
Torres
,
A.
Torelló
,
J.
Bafaluy
,
J.
Camacho
,
X.
Cartoixà
, and
F. X.
Alvarez
, “
First principles kinetic-collective thermal conductivity of semiconductors
,”
Phys. Rev. B
95
,
165407
(
2017
).
27.
P. M.
Martineau
,
M. P.
Gaukroger
,
K. B.
Guy
,
S. C.
Lawson
,
D. J.
Twitchen
,
I.
Friel
,
J. O.
Hansen
,
G. C.
Summerton
,
T. P. G.
Addison
, and
R.
Burns
, “
High crystalline quality single crystal chemical vapour deposition diamond
,”
J. Phys.: Condens. Matter
21
,
364205
(
2009
).
28.
U. F. S.
D’Haenens-Johansson
,
A.
Katrusha
,
K. S.
Moe
,
P.
Johnson
, and
W.
Wang
, “
Large colorless HPHT-grown synthetic gem diamonds from new diamond technology, Russia
,”
Gems Gemol.
51
,
260
279
(
2015
).
29.
E. A.
Burgemeister
and
C. A. J.
Ammerlaan
, “
High-temperature thermal conductivity of electron-irradiated diamond
,”
Phys. Rev. B
21
,
2499
2505
(
1980
).
30.
N. A.
Katcho
,
J.
Carrete
,
W.
Li
, and
N.
Mingo
, “
Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: An ab initio Green’s function approach
,”
Phys. Rev. B
90
,
094117
(
2014
).
31.
A. M.
Zaitsev
,
Optical Properties of Diamond: A Data Handbook
(
Springer-Verlag
,
Berlin
,
2001
).
32.
H. B.
Dyer
,
F. A.
Raal
,
L. D.
Preez
, and
J. H. N.
Loubser
, “
Optical absorption feature associated with paramagnetic nitrogen in diamond
,”
Philos. Mag.
11
,
763
774
(
1965
).
33.
A. M.
Edmonds
,
C. A.
Hart
,
M. J.
Turner
,
P.-O.
Colard
,
J. M.
Schloss
,
K.
Olsson
,
R.
Trubko
,
M. L.
Markham
,
A.
Rathmill
,
B.
Horne-Smith
,
W.
Lew
,
A.
Manickam
,
S.
Bruce
,
P. G.
Kaup
,
J. C.
Russo
,
M. J.
DiMario
,
J. T.
South
,
J. T.
Hansen
,
D. J.
Twitchen
, and
R.
Walsworth
, “
Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications
,”
Mater. Quantum Technol.
1
,
025001
(
2021
).
34.
J. F.
Barry
,
J. M.
Schloss
,
E.
Bauch
,
M. J.
Turner
,
C. A.
Hart
,
L. M.
Pham
, and
R. L.
Walsworth
, “
Sensitivity optimization for NV-diamond magnetometry
,”
Rev. Mod. Phys.
92
,
015004
(
2020
).
35.
Á
Gali
, “
Ab initio theory of the nitrogen-vacancy center in diamond
,”
Nanophotonics
8
,
1907
1943
(
2019
).
36.
G. A.
Slack
, “
Thermal conductivity of pure and impure silicon, silicon carbide, and diamond
,”
J. Appl. Phys.
35
,
3460
3466
(
1964
).
37.
P. R. W.
Hudson
and
P. P.
Phakey
, “
Defects in natural type Ib diamond
,”
Nature
269
,
227
229
(
1977
).
38.
J. W.
Vandersande
, “
A correlation between the infrared absorption features and the low temperature thermal conductivity of different types of natural diamonds
,”
J. Phys. C
13
,
757
764
(
1980
).
39.
E.
Fagen
,
J.
Goff
, and
N.
Pearlman
, “
Thermal conductivity and thermoelectric power of germanium at low temperatures
,”
Phys. Rev.
94
,
1415
(
1954
).
40.
J. F.
Goff
and
N.
Pearlman
, “
Thermal transport properties of n-type Ge at low temperatures
,”
Phys. Rev.
140
,
A2151
A2169
(
1965
); “Erratum: Thermal transport properties of n-type Ge at low temperatures,” Phys. Rev. 149, 734(E) (1966).
41.
M. P.
Mathur
and
N.
Pearlman
, “
Phonon scattering by neutral donors in germanium
,”
Phys. Rev.
180
,
833
845
(
1969
).
42.
J. A.
Carruthers
,
T. H.
Geballe
,
H. M.
Rosenberg
, and
J. M.
Ziman
, “
The thermal conductivity of germanium and silicon between 2 and 300 K
,”
Proc. R. Soc. London, Ser. A
238
,
502
514
(
1957
).
43.
J. A.
Carruthers
,
J. F.
Cochran
, and
K.
Mendelssohn
, “
Thermal conductivity of p-type germanium between 0.2 and 4 K
,”
Cryogenics
2
,
160
166
(
1962
).
44.
J. C.
Thompson
and
B. A.
Younglove
, “
Thermal conductivity of silicon at low temperatures
,”
J. Phys. Chem. Solids
20
,
146
149
(
1961
).
45.
M. G.
Holland
and
L. J.
Neuringer
, “The effect of impurities on the lattice thermal conductivirty of silicon,” in Proceedings of the International Conference on the Physics of Semiconductors (Institute of Physics and the Physical Society, London, 1962), pp. 474–481.
46.
M. G.
Holland
, “Thermal conductivity,” in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic Press, New York, 1966), Vol. 2, Chap. 1, pp. 3–31.
47.
P. D.
Maycock
, “
Thermal conductivity of silicon, germanium, III-V compounds and III-V alloys
,”
Solid-State Electron.
10
,
161
68
(
1967
).
48.
B. L.
Bird
and
N.
Pearlman
, “
Thermal conductivity of n-type germanium from 0.3 to 4.2 K
,”
Phys. Rev. B
4
,
4406
4416
(
1971
).
49.
M.
Singh
and
G. S.
Verma
, “
The effect of electrical field of impurity centres and phonon-electron screening in phonon conductivity of III-V semiconductors at low temperatures
,”
J. Phys. C
7
,
3743
3750
(
1974
).
50.
D.
Fortier
and
K.
Suzuki
, “
Effect of P donors on thermal phonon scattering in Si
,”
J. Phys. (Paris)
37
,
143
147
(
1976
).
51.
M. N.
Wybourne
and
J. K.
Wigmore
, “
Phonon spectroscopy
,”
Rep. Prog. Phys.
51
,
923
987
(
1988
).
52.
D. T.
Morelli
,
J. P.
Heremans
,
C. P.
Beetz
,
W. S.
Yoo
, and
H.
Matsunami
, “
Phonon-electron scattering in single crystal silicon carbide
,”
Appl. Phys. Lett.
63
,
3143
3145
(
1993
).
53.
M.
Asheghi
,
K.
Kurabayashi
,
R.
Kasnavi
, and
K. E.
Goodson
, “
Thermal conduction in doped single-crystal silicon films
,”
J. Appl. Phys.
91
,
5079
5088
(
2002
).
54.
R. W.
Keyes
, “
Low-temperature thermal resistance of n-type germanium
,”
Phys. Rev.
122
,
1171
1176
(
1961
).
55.
A.
Griffin
and
P.
Carruthers
, “
Thermal conductivity of solids IV: Resonance fluorescence scattering of phonons by donor electrons in germanium
,”
Phys. Rev.
131
,
1976
1995
(
1963
).
56.
P. C.
Kwok
, “
Acoustic attenuation by neutral donor impurity atoms in germanium
,”
Phys. Rev.
149
,
666
674
(
1966
).
57.
K.
Suzuki
and
N.
Mikoshiba
, “
On the low-temperature thermal conductivity of n-Ge
,”
J. Phys. Soc. Jpn.
31
,
186
189
(
1971
).
58.
K.
Suzuki
and
N.
Mikoshiba
, “
Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si
,”
J. Phys. Soc. Jpn.
31
,
44
53
(
1971
); “Erratum: Effects of uniaxial stress and magnetic field on the low-temperature thermal conductivity of p-type Ge and Si,” J. Phys. Soc. Jpn. 32, 586(E) (1972).
59.
K.
Suzuki
and
N.
Mikoshiba
, “
Low-temperature thermal conductivity of p-type Ge and Si
,”
Phys. Rev. B
3
,
2550
2556
(
1971
).
60.
M.
Fava
,
N. H.
Protik
,
C.
Li
,
N. K.
Ravichandran
,
J.
Carrete
,
A.
van Roekeghem
,
G. K. H.
Madsen
,
N.
Mingo
, and
D.
Broido
, “
How dopants limit the ultrahigh thermal conductivity of boron arsenide: A first principles study
,”
npj Comput. Mater.
7
,
54
(
2021
).
61.
J. W.
Vandersande
, “Low temperature thermal conductivity of natural type II diamonds,” in Diamond Research (Industrial Diamond Information Bureau, London, 1973), p. 21.
62.
G.
Shu
,
B.
Dai
,
V. G.
Ralchenko
,
A. A.
Khomich
,
E. E.
Ashkinazi
,
A. P.
Bolshakov
,
S. N.
Bokova-Sirosh
,
K.
Liu
,
J.
Zhao
,
J.
Han
, and
J.
Zhu
, “
Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy
,”
J. Cryst. Growth
463
,
19
26
(
2017
).
63.
H.
Yamada
,
A.
Chayahara
,
Y.
Mokuno
,
Y.
Kato
, and
S.
Shikata
, “
A 2-in. mosaic wafer made of a single-crystal diamond
,”
Appl. Phys. Lett.
104
,
102110
(
2014
).
64.
S. D.
Williams
,
D. J.
Twitchen
,
P. M.
Martineau
,
G. A.
Scarsbrook
, and
I.
Friel
, “High colour diamond layer,” U.S. patent 7,964,280 (June 21, 2011).
65.
W.
Wang
,
P.
Doering
,
J.
Tower
,
R.
Lu
,
S.
Eaton-Magaña
,
P.
Johnson
,
E.
Emerson
, and
T. M.
Moses
, “
Strongly colored pink CVD lab-grown diamonds
,”
Gems Gemol.
46
,
4
17
(
2010
).
66.
B.
Deljanin
,
F.
Herzog
,
W.
Bieri
,
M.
Alessandri
,
D.
Günther
,
D.
Frick
,
E.
Cleveland
,
A.
Zaitsev
, and
A.
Peretti
, “
New generation of synthetic diamonds reaches the market, Part B: Identification of treated CVD-grown pink diamonds from Orion (PDC)
,”
Contrib. Gemol.
14
,
21
40
(
2014
).
67.
R. U. A.
Khan
,
P. M.
Martineau
,
B. L.
Cann
,
M. E.
Newton
, and
D. J.
Twitchen
, “
Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond
,”
J. Phys.: Condens. Matter
21
,
364214
(
2009
).
68.
R. U. A.
Khan
,
B. L.
Cann
,
P. M.
Martineau
,
J.
Samartseva
,
J. J. P.
Freeth
,
S. J.
Sibley
,
C. B.
Hartland
,
M. E.
Newton
,
H. K.
Dhillon
, and
D. J.
Twitchen
, “
Colour-causing defects and their related optoelectronic transitions in single crystal CVD diamond
,”
J. Phys.: Condens. Matter
25
,
275801
(
2013
).
69.
V.
Sedov
,
K.
Boldyrev
,
V.
Krivobok
,
S.
Nikolaev
,
A.
Bolshakov
,
A.
Khomich
,
A.
Khomich
,
A.
Krasilnikov
, and
V.
Ralchenko
, “
SiV color centers in Si-doped isotopically enriched 12C and 13C CVD diamonds
,”
Phys. Status Solidi A
214
,
1700198
(
2017
).
70.
F.
Fuchs
,
C.
Wild
,
K.
Schwarz
, and
P.
Koidl
, “
Hydrogen-related IR absorption in chemical vapour deposited diamond
,”
Diamond Relat. Mater.
4
,
652
656
(
1995
).
71.
S. V.
Nistor
,
M.
Stefan
,
V.
Ralchenko
,
A.
Khomich
, and
D.
Schoemaker
, “
Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates
,”
J. Appl. Phys.
87
,
8741
8746
(
2000
).
72.
G.
Davies
, “
Current problems in diamond: Towards a quantitative understanding
,”
Phys. B: Condens. Matter
273–274
,
15
23
(
1999
).
73.
U. F. S.
D’Haenens-Johansson
,
A. M.
Edmonds
,
M. E.
Newton
,
J. P.
Goss
,
P.
Briddon
,
J. M.
Baker
,
P. M.
Martineau
,
R. U. A.
Khan
,
D. J.
Twitchen
, and
S. D.
Williams
, “
EPR of a defect in CVD diamond involving both silicon and hydrogen that shows preferential alignment
,”
Phys. Rev. B
82
,
155205
(
2010
).
74.
M. W.
Dale
, “Colour centres on demand in diamond,” Ph.D. thesis (University of Warwick, UK, 2015).
75.
S.
Liggins
, “Identication of point defects in treated single crystal diamond,” Ph.D. thesis (University of Warwick, UK, 2010).
76.
R.
Erz
,
W.
Dötter
,
K.
Jung
, and
H.
Ehrhardt
, “
Investigation of boron and hydrogen concentrations in p-type diamond films by infrared spectroscopy
,”
Diamond Relat. Mater.
4
,
469
472
(
1995
).
77.
S. C.
Lawson
,
D.
Fisher
,
D. C.
Hunt
, and
M. E.
Newton
, “
On the existence of positively charged single-substitutional nitrogen in diamond
,”
J. Phys.: Condens. Matter
10
,
6171
6180
(
1998
).
78.
L. J.
Rogers
,
K. D.
Jahnke
,
M. H.
Metsch
,
A.
Sipahigil
,
J. M.
Binder
,
T.
Teraji
,
H.
Sumiya
,
J.
Isoya
,
M. D.
Lukin
,
P.
Hemmer
, and
F.
Jelezko
, “
All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond
,”
Phys. Rev. Lett.
113
,
263602
(
2014
).
79.
A. N.
Taldenkov
,
A. V.
Inyushkin
,
E. A.
Chistotina
,
V. G.
Ralchenko
,
A. P.
Bolshakov
, and
E. N.
Mokhov
, “
Magnetic properties of the natural and isotope-modified diamond and silicon carbide
,”
EPJ Web Conf.
185
,
04007
(
2018
).
80.
V. G.
Ralchenko
,
A. V.
Inyushkin
,
G.
Shu
,
B.
Dai
,
I. A.
Karateev
,
A. P.
Bolshakov
,
A. A.
Khomich
,
E. E.
Ashkinazi
,
E.
Zavedeev
,
J.
Han
, and
J.
Zhu
, “
Thermal conductivity of diamond mosaic crystals grown by chemical vapor deposition: Thermal resistance of junctions
,”
Phys. Rev. Appl.
16
,
014049
(
2021
).
81.
A. V.
Inyushkin
, personal communication (2021).
82.
Y.
Yamamoto
,
T.
Imai
,
K.
Tanabe
,
T.
Tsuno
,
Y.
Kumazawa
, and
N.
Fujimori
, “
The measurement of thermal properties of diamond
,”
Diamond Relat. Mater.
6
,
1057
1061
(
1997
).
83.
T. R.
Anthony
,
W. F.
Banholzer
,
J. F.
Fleischer
,
L.
Wei
,
P. K.
Kuo
,
R. L.
Thomas
, and
R. W.
Pryor
, “
Thermal diffusivity of isotopically enriched 12C diamond
,”
Phys. Rev. B
42
,
1104
1111
(
1990
).
84.
K.
Nakamura
,
K.
Horiuchi
,
S.
Yamashita
,
K.
Kataoka
, and
M.
Yoshimoto
, “
Synthesis and thermal conductivity of boron-doped and 12C-enriched diamond single crystals
,”
Jpn. J. Appl. Phys.
46
,
L739
L742
(
2007
).
85.
A. A.
Kaminskii
,
V. G.
Ralchenko
,
H.
Yoneda
,
A. P.
Bolshakov
, and
A. V.
Inyushkin
, “
Stimulated Raman scattering-active isotopically pure 12C and 13C diamond crystals: A milestone in the development of diamond photonics
,”
JETP Lett.
104
,
347
352
(
2016
).
86.
M.
Reichling
,
T.
Klotzbücher
, and
J.
Hartmann
, “
Local variation of room-temperature thermal conductivity in high-quality polycrystalline diamond
,”
Appl. Phys. Lett.
73
,
756
758
(
1998
).
87.
A. P.
Bolshakov
,
V. G.
Ralchenko
,
V. Y.
Yurov
,
A. F.
Popovich
,
I. A.
Antonova
,
A. A.
Khomich
,
E. E.
Ashkinazi
,
S. G.
Ryzhkov
,
A. V.
Vlasov
, and
A. V.
Khomich
, “
High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation
,”
Diamond Relat. Mater.
62
,
49
57
(
2016
).
88.
R. B.
Simon
,
J.
Anaya
,
F.
Faili
,
R.
Balmer
,
G. T.
Williams
,
D. J.
Twitchen
, and
M.
Kuball
, “
Effect of grain size of polycrystalline diamond on its heat spreading properties
,”
Appl. Phys. Express
9
,
061302
(
2016
).
89.
J.
Callaway
, “
Model for lattice thermal conductivity at low temperatures
,”
Phys. Rev.
113
,
1046
1051
(
1959
).
90.
H. B. G.
Casimir
, “
Note on the conduction of heat in crystals
,”
Physica (Amsterdam)
5
,
495
500
(
1938
).
91.
R.
Berman
,
F. E.
Simon
, and
J. M.
Ziman
, “
The thermal conductivity of diamond at low temperatures
,”
Proc. R. Soc. London, Ser. A
220
,
171
183
(
1953
).
92.
R.
Berman
,
E. L.
Foster
, and
J. M.
Ziman
, “
Thermal conduction in artificial sapphire crystals at low temperatures. I. Nearly perfect crystals
,”
Proc. R. Soc. London, Ser. A
231
,
130
144
(
1955
).
93.
A. K.
McCurdy
,
H. J.
Maris
, and
C.
Elbaum
, “
Anisotropic heat conduction in cubic crystals in the boundary scattering regime
,”
Phys. Rev. B
2
,
4077
4083
(
1970
).
94.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Clarendon Press
,
Oxford
,
1960
).
95.
S. B.
Soffer
, “
Statistical model for the size effect in electrical conduction
,”
J. Appl. Phys.
38
,
1710
1715
(
1967
).
96.
A. R.
Lang
and
G.
Pang
, “
On the dilatation of diamond by nitrogen impurity aggregated in a defects
,”
Philos. Trans. R. Soc. A
356
,
1397
1419
(
1998
).
97.
C. A.
Ratsifaritana
and
P. G.
Klemens
, “
Scattering of phonons by vacancies
,”
Int. J. Thermophys.
8
,
737
750
(
1987
).
98.
S.
Tamura
, “
Isotope scattering of large-wave-vector phonons in GaAs and InSb: Deformation-dipole and overlap-shell models
,”
Phys. Rev. B
30
,
849
854
(
1984
).
99.
A. P.
Zhernov
and
A. V.
Inyushkin
, “
Effect of isotopic composition on phonon modes. Static atomic displacements in crystals
,”
Phys.–Usp.
44
,
785
811
(
2001
).
100.
F.
Herman
, “
Electronic structure of the diamond crystal
,”
Phys. Rev.
88
,
1210
1211
(
1952
).
101.
J. R.
Leite
,
B. I.
Bennett
, and
F.
Herman
, “
Electronic structure of the diamond crystal based on an improved cellular calculation
,”
Phys. Rev. B
12
,
1466
1481
(
1975
).
102.
F.
Nava
,
C.
Canali
,
C.
Jacoboni
,
L.
Reggiani
, and
S. F.
Kozlov
, “
Electron effective masses and lattice scattering in natural diamond
,”
Solid State Commun.
33
,
475
477
(
1980
).
103.
P. J.
Dean
,
E. C.
Lightowlers
, and
D. R.
Wight
, “
Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond
,”
Phys. Rev.
140
,
A352
A368
(
1965
).
104.
J.
Isberg
,
M.
Gabrysch
,
S.
Majdi
, and
D. J.
Twitchen
, “
Negative electron mobility in diamond
,”
Appl. Phys. Lett.
100
,
172103
(
2012
).
105.
D.
Fortier
,
H.
Djerassi
,
K.
Suzuki
, and
H. J.
Albany
, “
Scattering of thermal phonons by Li-O donors in Si
,”
Phys. Rev. B
9
,
4340
4343
(
1974
).
106.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors. Physics and Materials Properties
, 4th ed. (
Springer
,
Berlin
,
2010
), Chap. 4.
107.
D.
Fortier
and
K.
Suzuki
, “
Thermal phonon scattering in Li-doped Si
,”
Phys. Rev. B
9
,
2530
2538
(
1974
).
108.
V.
Radhakrishnan
and
P. C.
Sharma
, “
Electron–phonon interaction in P-, As-, and Sb-doped germanium in the intermediate concentration region
,”
Can. J. Phys.
58
,
1268
1274
(
1980
).
109.
A.
Adolf
,
D.
Fortier
,
J. H.
Albany
, and
K.
Suzuki
, “
Valley-orbit splitting of Li in Ge
,”
Phys. Rev. Lett.
41
,
1477
1480
(
1978
).
110.
L. J.
Challis
and
S. C.
Haseler
, “
The effect of uniaxial stress on the thermal conductivity of p-Ge
,”
J. Phys. C
11
,
4681
4694
(
1978
).
111.
R. G.
Farrer
, “
On the substitutional nitrogen donor in diamond
,”
Solid State Commun.
7
,
685
688
(
1969
).
112.
R. G.
Farrer
and
L. A.
Vermeulen
, “
Photoconductivity in irradiated diamond
,”
J. Phys. C
5
,
2762
2768
(
1972
).
113.
A. T.
Collins
, “
Intrinsic and extrinsic absorption and luminescence in diamond
,”
Phys. B: Condens. Matter
185
,
284
296
(
1993
).
114.
G. B.
Bachelet
,
G. A.
Baraff
, and
M.
Schlüter
, “
Defects in diamond: The unrelaxed vacancy and substitutional nitrogen
,”
Phys. Rev. B
24
,
4736
4744
(
1981
).
115.
S. A.
Kajihara
,
A.
Antonelli
,
J.
Bernholc
, and
R.
Car
, “
Nitrogen and potential n-type dopants in diamond
,”
Phys. Rev. Lett.
66
,
2010
2013
(
1991
).
116.
J. P.
Goss
,
R. J.
Eyre
, and
P. R.
Briddon
, “
Theoretical models for doping diamond for semiconductor applications
,”
Phys. Status Solidi B
245
,
1679
1700
(
2008
).
117.
T.
Shimomura
,
Y.
Kubo
,
J.
Barjon
,
N.
Tokuda
,
I.
Akimoto
, and
N.
Naka
, “
Quantitative relevance of substitutional impurities to carrier dynamics in diamond
,”
Phys. Rev. Mater.
2
,
094601
(
2018
).
118.
K.
Suzuki
and
N.
Mikoshiba
, “
Ultrasonic attenuation by acceptor holes in Si
,”
Phys. Rev. Lett.
28
,
94
96
(
1972
).
119.
C.
Elbaum
,
T.
Fjeldly
, and
T.
Ishiguro
, “
Interaction of phonons with stress-split acceptor states in Ge and Si
,”
J. Phys. Colloq.
33
,
C4–95–C4–99
(
1972
).
120.
S.
Singh
and
G. S.
Verma
, “
Resonant scattering of phonons by bound holes in gallium doped Ge and boron doped silicon in the temperature range 1 to 5 K
,”
Phys. Status Solidi B
98
,
K101
K103
(
1980
).
121.
T.
Sota
,
K.
Suzuki
, and
D.
Fortier
, “
Low-temperature thermal conductivity of heavily doped p-type semiconductors
,”
J. Phys. C
17
,
5935
5944
(
1984
).
122.
L. J.
Challis
,
A. M.
de Goër
, and
S. C.
Haseler
, “
Thermal conductivity of p-Ge down to 50 mK
,”
Phys. Rev. Lett.
39
,
558
561
(
1977
).
123.
A. M.
Edmonds
,
U. F. S.
D’Haenens-Johansson
,
R. J.
Cruddace
,
M. E.
Newton
,
K.-M. C.
Fu
,
C.
Santori
,
R. G.
Beausoleil
,
D. J.
Twitchen
, and
M. L.
Markham
, “
Production of oriented nitrogen-vacancy color centers in synthetic diamond
,”
Phys. Rev. B
86
,
035201
(
2012
).

Supplementary Material

You do not currently have access to this content.