Nanoscale analysis of magnetic properties of graphene nanoribbons (GNRs) conjugated with magnetic nanoparticles has been studied in this work. The effect of varying concentrations of Fe3O4 and Ni nanoparticles on the magnetic domain structure of GNRs has been investigated using magnetic force microscopy (MFM). A variable external magnetic field was applied to the samples, and an evident variation in the domain structure with a change in the magnetic field was observed. It was found that magnetic properties and the imaged magnetic domain structure are influenced by the concentration of magnetic nanoparticles conjugated with GNRs. The vibrating sample magnetometry (VSM) studies support the nano-domain studies done using MFM such that the trend observed for the saturation magnetization obtained from vibrating sample magnetometry (VSM) matches that of the phase difference obtained using MFM.

1.
K.
Nakada
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
,”
Phys. Rev. B
54
,
17954
(
1996
).
2.
V.
Barone
,
O.
Hod
, and
G. E.
Scuseria
, “
Electronic structure and stability of semiconducting graphene nanoribbons
,”
Nano Lett.
6
,
2748
2754
(
2006
).
3.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Half-metallic graphene nanoribbons
,”
Nature
444
,
347
349
(
2006
).
4.
E.-j.
Kan
,
Z.
Li
,
J.
Yang
, and
J.
Hou
, “
Half-metallicity in edge-modified zigzag graphene nanoribbons
,”
J. Am. Chem. Soc.
130
,
4224
4225
(
2008
).
5.
K.
Wakabayashi
,
M.
Sigrist
, and
M.
Fujita
, “
Spin wave mode of edge-localized magnetic states in nanographite zigzag ribbons
,”
J. Phys. Soc. Jpn.
67
,
2089
2093
(
1998
).
6.
O. V.
Yazyev
and
M.
Katsnelson
, “
Magnetic correlations at graphene edges: Basis for novel spintronics devices
,”
Phys. Rev. Lett.
100
,
047209
(
2008
).
7.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Energy gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
97
,
216803
(
2006
).
8.
J.
Hong
,
C.
Jin
,
J.
Yuan
, and
Z.
Zhang
, “
Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis
,”
Adv. Mater.
29
,
1606434
(
2017
).
9.
H.
Sevinçli
,
M.
Topsakal
,
E.
Durgun
, and
S.
Ciraci
, “
Electronic and magnetic properties of 3D transition-metal atom adsorbed graphene and graphene nanoribbons
,”
Phys. Rev. B
77
,
195434
(
2008
).
10.
M.
Kan
,
J.
Zhou
,
Q.
Sun
,
Q.
Wang
,
Y.
Kawazoe
, and
P.
Jena
, “
Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic
,”
Phys. Rev. B
85
,
155450
(
2012
).
11.
O. V.
Yazyev
and
L.
Helm
, “
Defect-induced magnetism in graphene
,”
Phys. Rev. B
75
,
125408
(
2007
).
12.
S.
Haffad
,
L.
Benchallal
,
L.
Lamiri
,
F.
Boubenider
,
H.
Zitoune
,
B.
Kahouadji
, and
M.
Samah
, “
Effect of vacancies on electronic and magnetic properties of hydrogen passivated graphene nanoribbons
,”
Acta Phys. Pol. A
133
,
1307
(
2018
).
13.
S. D.
Bader
, “
Colloquium: Opportunities in nanomagnetism
,”
Rev. Mod. Phys.
78
,
1
(
2006
).
14.
D.
Wei
,
L.
Xie
,
K. K.
Lee
,
Z.
Hu
,
S.
Tan
,
W.
Chen
,
C. H.
Sow
,
K.
Chen
,
Y.
Liu
, and
A. T. S.
Wee
, “
Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes
,”
Nat. Commun.
4
,
1374
(
2013
).
15.
L.
Tapasztó
,
G.
Dobrik
,
P.
Lambin
, and
L. P.
Biro
, “
Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
,”
Nat. Nanotechnol.
3
,
397
401
(
2008
).
16.
G. Z.
Magda
,
X.
Jin
,
I.
Hagymási
,
P.
Vancsó
,
Z.
Osváth
,
P.
Nemes-Incze
,
C.
Hwang
,
L. P.
Biro
, and
L.
Tapaszto
, “
Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
,”
Nature
514
,
608
611
(
2014
).
17.
K. A.
Ritter
and
J. W.
Lyding
, “
The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
,”
Nat. Mater.
8
,
235
242
(
2009
).
18.
A.
Konishi
,
Y.
Hirao
,
H.
Kurata
, and
T.
Kubo
, “
Investigating the edge state of graphene nanoribbons by a chemical approach: Synthesis and magnetic properties of zigzag-edged nanographene molecules
,”
Solid State Commun.
175
,
62
70
(
2013
).
19.
L.
Fu
,
K.
Zhang
,
W.
Zhang
,
J.
Chen
,
Y.
Deng
,
Y.
Du
, and
N.
Tang
, “
Synthesis and intrinsic magnetism of bilayer graphene nanoribbons
,”
Carbon
143
,
1
7
(
2019
).
20.
A. L.
Higginbotham
,
D. V.
Kosynkin
,
A.
Sinitskii
,
Z.
Sun
, and
J. M.
Tour
, “
Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes
,”
ACS Nano
4
,
2059
2069
(
2010
).
21.
Z.-S.
Wu
,
W.
Ren
,
L.
Gao
,
B.
Liu
,
J.
Zhao
, and
H.-M.
Cheng
, “
Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets
,”
Nano Res.
3
,
16
22
(
2010
).
22.
D.-E.
Jiang
,
B. G.
Sumpter
, and
S.
Dai
, “
Unique chemical reactivity of a graphene nanoribbon’s zigzag edge
,”
J. Chem. Phys.
126
,
134701
(
2007
).
23.
M.
Coïsson
,
G.
Barrera
,
F.
Celegato
,
A.
Manzin
,
F.
Vinai
, and
P.
Tiberto
, “
Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy
,”
Sci. Rep.
6
,
29904
(
2016
).
24.
M.
Bonini
,
S.
Lenz
,
R.
Giorgi
, and
P.
Baglioni
, “
Nanomagnetic sponges for the cleaning of works of art
,”
Langmuir
23
,
8681
8685
(
2007
).
25.
K. M.
Krishnan
,
A. B.
Pakhomov
,
Y.
Bao
,
P.
Blomqvist
,
Y.
Chun
,
M.
Gonzales
,
K.
Griffin
,
X.
Ji
, and
B. K.
Roberts
, “
Nanomagnetism and spin electronics: Materials, microstructure and novel properties
,”
J. Mater. Sci.
41
,
793
815
(
2006
).
26.
N.
Liu
,
W.
Li
,
M.
Pasta
, and
Y.
Cui
, “
Nanomaterials for electrochemical energy storage
,”
Front. Phys.
9
,
323
350
(
2014
).
27.
R.
Longo
,
J.
Carrete
,
J.
Ferrer
, and
L. J.
Gallego
, “
Structural, magnetic, and electronic properties of Nin and Fen nanostructures (n=14) adsorbed on zigzag graphene nanoribbons
,”
Phys. Rev. B
81
,
115418
(
2010
).
28.
N. K.
Jaiswal
and
P.
Srivastava
, “
Enhanced metallicity and spin polarization in zigzag graphene nanoribbons with Fe impurities
,”
Physica E
54
,
103
108
(
2013
).
29.
F.
Cataldo
,
G.
Compagnini
,
G.
Patané
,
O.
Ursini
,
G.
Angelini
,
P. R.
Ribic
,
G.
Margaritondo
,
A.
Cricenti
,
G.
Palleschi
, and
F.
Valentini
, “
Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes
,”
Carbon
48
,
2596
2602
(
2010
).
30.
S.
Parmar
,
B.
Ray
,
K.
Date
, and
S.
Datar
, “
Modified graphene as a conducting ink for electromagnetic interference shielding
,”
J. Phys. D: Appl. Phys.
52
,
375302
(
2019
).
31.
L.
Xie
,
H.
Wang
,
C.
Jin
,
X.
Wang
,
L.
Jiao
,
K.
Suenaga
, and
H.
Dai
, “
Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, raman spectroscopy, and electrical properties
,”
J. Am. Chem. Soc.
133
,
10394
10397
(
2011
).
32.
R.
Eluri
and
B.
Paul
, “
Synthesis of nickel nanoparticles by hydrazine reduction: Mechanistic study and continuous flow synthesis
,”
J. Nanopart. Res.
14
,
800
(
2012
).
33.
S.-H.
Wu
and
D.-H.
Chen
, “
Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol
,”
J. Colloid Interface Sci.
259
,
282
286
(
2003
).
34.
J.
Cheng
,
X.
Zhang
, and
Y.
Ye
, “
Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes
,”
J. Solid State Chem.
179
,
91
95
(
2006
).
35.
T. O.
Ely
,
C.
Amiens
,
B.
Chaudret
,
E.
Snoeck
,
M.
Verelst
,
M.
Respaud
, and
J.-M.
Broto
, “
Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly (vinylpyrrolidone) chain length on their magnetic properties
,”
Chem. Mater.
11
,
526
529
(
1999
).
36.
Q.
Li
,
C. W.
Kartikowati
,
S.
Horie
,
T.
Ogi
,
T.
Iwaki
, and
K.
Okuyama
, “
Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles
,”
Sci. Rep.
7
,
9894
(
2017
).
37.
J.
Červenka
,
M.
Katsnelson
, and
C.
Flipse
, “
Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects
,”
Nat. Phys.
5
,
840
844
(
2009
).
38.
H.
Ohldag
,
T.
Tyliszczak
,
R.
Höhne
,
D.
Spemann
,
P.
Esquinazi
,
M.
Ungureanu
, and
T.
Butz
, “
π-electron ferromagnetism in metal-free carbon probed by soft x-ray dichroism
,”
Phys. Rev. Lett.
98
,
187204
(
2007
).
39.
O.
Kazakova
,
R.
Puttock
,
C.
Barton
,
H.
Corte-León
,
M.
Jaafar
,
V.
Neu
, and
A.
Asenjo
, “
Frontiers of magnetic force microscopy
,”
J. Appl. Phys.
125
,
060901
(
2019
).
40.
M.
Jaafar
,
R.
Yanes
,
A.
Asenjo
,
O.
Chubykalo-Fesenko
,
M.
Vázquez
,
E.
Gonzalez
, and
J.
Vicent
, “
Field induced vortex dynamics in magnetic Ni nanotriangles
,”
Nanotechnology
19
,
285717
(
2008
).
41.
T.
Wang
and
M.
Medraj
, “
Magnetic force microscopic study of Ce2(Fe, Co)14B, and its modifications by Ni and Cu
,”
J. Magn. Magn. Mater.
460
,
95
103
(
2018
).
42.
U.
Hartmann
, “
Magnetic force microscopy
,”
Annu. Rev. Mater. Sci.
29
,
53
87
(
1999
).
43.
A.
Hubert
and
R.
Schäfer
,
Magnetic Domains: The Analysis of Magnetic Microstructures
(
Springer Science & Business Media
,
2008
).
44.
A.
Schwarz
,
M.
Liebmann
,
U.
Kaiser
,
R.
Wiesendanger
,
T. W.
Noh
, and
D. W.
Kim
, “
Visualization of the Barkhausen effect by magnetic force microscopy
,”
Phys. Rev. Lett.
92
,
077206
(
2004
).
45.
D.
Majumder
and
S.
Karan
, “Magnetic properties of ceramic nanocomposites,” in Ceramic Nanocomposites (Elsevier, 2013), pp. 51–91.
46.
S.
Schreiber
,
M.
Savla
,
D. V.
Pelekhov
,
D. F.
Iscru
,
C.
Selcu
,
P. C.
Hammel
, and
G.
Agarwal
, “
Magnetic force microscopy of superparamagnetic nanoparticles
,”
Small
4
,
270
278
(
2008
).
47.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
48.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la-Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).

Supplementary Material

You do not currently have access to this content.