In this work, we consider the possibility of building a magnonic co-processor for special task data processing. Its principle of operation is based on the natural property of an active ring circuit to self-adjust to the resonant frequency. The co-processor comprises a multi-path active ring circuit where the magnetic part is a mesh of magnonic waveguides. Each waveguide acts as a phase shifter and a frequency filter at the same time. Being connected to the external electric part, the system naturally searches for the path which matches the phase of the electric part. This property can be utilized for solving a variety of mathematical problems including prime factorization, bridges of the Konigsberg problem, traveling salesman, etc. We also present experimental data on the proof-of-the-concept experiment demonstrating the spin wave signal re-routing inside a magnonic matrix depending on the position of the electric phase shifter. The magnetic part is a 3 × 3 matrix of waveguides made of single-crystal yttrium iron garnet Y3Fe2(FeO4)3 films. The results demonstrate a prominent change in the output power at different ports depending on the position of the electric phase shifter. The described magnonic co-processor is robust, deterministic, and operates at room temperature. The ability to exploit the unique physical properties inherent in spin waves and classical wave superposition may be translated into a huge functional throughput that may exceed 1060 operations per meter squared per second for 50×50 magnetic mesh. Physical limits and constraints are also discussed.

1.
X. M.
Li
and
L. D.
Xu
, “
A review of internet of things-resource allocation
,”
IEEE Internet Things J.
8
,
8657
8666
(
2021
).
2.
H.
Perez-Sanchez
,
J. M.
Cecilia
, and
I.
Merelli
, in
2nd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO)
(Roehampton University Press,
2014
), pp.
494
506
.
3.
G.
Boole
,
An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities
(
Dover Publications
,
New York
,
1958
) (reissued by Cambridge University Press, 2009). .
4.
G. E.
Moore
, “
Cramming more components onto integrated circuits
,”
Electronics
38
,
114
117
(
1965
).
5.
M. T.
Bohr
and
I. A.
Young
, “
CMOS scaling trends and beyond
,”
IEEE Micro
37
,
20
29
(
2017
).
6.
B.
Hoefflinger
, in
Chips 2020, Vol. 2 New Vistas in Nanoelectronics Frontiers Collection
, edited by
B.
Hoefflinger
(
Springer
,
2016
), pp.
143
148
.
7.
H. H.
Radamson
 et al, “
State of the art and future perspectives in advanced CMOS technology
,”
Nanomaterials
10
,
1555
(
2020
).
9.
D. E.
Nikonov
and
I. A.
Young
, “
Overview of beyond-CMOS devices and a uniform methodology for their benchmarking
,”
Proc. IEEE
101
,
2498
2533
(
2013
).
10.
S.
Manipatruni
,
D. E.
Nikonov
, and
I. A.
Young
, “
Beyond CMOS computing with spin and polarization
,”
Nat. Phys.
14
,
338
343
(
2018
).
11.
A.
Barman
 et al, “
The 2021 magnonics roadmap
,”
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
12.
M. P.
Kostylev
,
A. A.
Serga
,
T.
Schneider
,
B.
Leven
, and
B.
Hillebrands
, “
Spin-wave logical gates
,”
Appl. Phys. Lett.
87
,
153501
(
2005
).
13.
A.
Khitun
and
K. L.
Wang
, “
Nano scale computational architectures with spin wave bus
,”
Superlattices Microstruct.
38
,
184
200
(
2005
).
14.
J. L.
Chen
,
H. M.
Yu
, and
G.
Gubbiotti
, “
Unidirectional spin-wave propagation and devices
,”
J. Phys. D: Appl. Phys.
55
,
123001
(
2022
).
15.
A.
Khitun
,
M. Q.
Bao
, and
K. L.
Wang
, “
Spin wave magnetic nanofabric: A new approach to spin-based logic circuitry
,”
IEEE Trans. Magn.
44
,
2141
2152
(
2008
).
16.
A.
Khitun
and
I.
Krivorotov
, Spin Wave Logic Devices (CRC Press,
2019
).
17.
A. B.
Ustinov
,
E.
Lahderanta
,
M.
Inoue
, and
B. A.
Kalinikosl
, “
Nonlinear spin-wave logic gates
,”
IEEE Mag. Lett.
10
, 5508204 (
2019
).
18.
T.
Fischer
 et al, “
Experimental prototype of a spin-wave majority gate
,”
Appl. Phys. Lett.
110
,
152401
(
2017
).
19.
N.
Sato
,
K.
Sekiguchi
, and
Y.
Nozaki
, “
Electrical demonstration of spin-wave logic operation
,”
Appl. Phys. Express
6
,
063001
(
2013
).
20.
K.
Nanayakkara
,
A.
Anferov
,
A. P.
Jacob
,
S. J.
Allen
, and
A.
Kozhanov
, “
Cross junction spin wave logic architecture
,”
IEEE Trans. Magn.
50
, 11 (
2014
).
21.
R.
Cheng
,
M. W.
Daniels
,
J. G.
Zhu
, and
D.
Xiao
, “
Antiferromagnetic spin wave field-effect transistor
,”
Sci. Rep.
6
,
24223
(
2016
).
22.
A.
Litvinenko
 et al, cond-matter archiv (
2022
).
23.
S.
Watt
and
M.
Kostylev
, “
Reservoir computing using a spin-wave delay-line active-ring resonator based on yttrium-iron-garnet film
,”
Phys. Rev. Appl.
13
,
034057
(
2020
).
24.
A.
Khitun
and
M.
Balinskiy
, “
Combinatorial logic devices based on a multi-path active ring circuit
,”
Sci. Rep.
12
,
9482
(
2022
).
25.
T. J.
Silva
,
C. S.
Lee
,
T. M.
Crawford
, and
C. T.
Rogers
, “
Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy
,”
J. Appl. Phys.
85
,
7849
7862
(
1999
).
26.
S.
Cherepov
 et al, “
Electric-field-induced spin wave generation using multiferroic magnetoelectric cells
,”
Appl. Phys. Lett.
104
,
082403
(
2014
).
27.
M.
Balinskiy
 et al, “
Magnetoelectric spin wave modulator based on synthetic multiferroic structure
,”
Sci. Rep.
8
,
10867
(
2018
).
28.
A. G.
Gurevich
and
G. A.
Melkov
,
Magnetization Oscillations and Waves
(
CRC Press
,
1996
), pp.
147
176
.
29.
V. S.
Tiberkevich
,
R. S.
Khymyn
,
H. X.
Tang
, and
A. N.
Slavin
, “
Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback
,”
Sci. Rep.
4
,
3873
(
2014
).
30.
M.
Covington
,
T. M.
Crawford
, and
G. J.
Parker
, “
Time-resolved measurement of propagating spin waves in ferromagnetic thin films
,”
Phys. Rev. Lett.
89
,
237202
(
2002
).
31.
J. H.
Collins
and
D. C.
Webb
, “
Magnetoacoustic delay line employing YIG-YAG-YIG configuration
,”
Proc. Inst. Electr. Electron. Eng.
55
,
1492
(
1967
).
32.
S.
Cherepov
 et al “
Electric-field-induced spin wave generation using multiferroic magnetoelectric cells
,” in
Proceedings of the 56th Conference on Magnetism and Magnetic Materials (MMM 2011), DB-03
,
Scottsdale, Arizona
(MMM,
2011
).
33.
D. E.
Nikonov
and
I. A.
Young
, “Uniform methodology for benchmarking beyond-CMOS logic devices,” in
2012 IEEE International Electron Devices Meeting (IEDM 2012)
(IEDM,
2012
), p. 25.
34.
P. Mladenović,
Combinatorics: A Problem Based Approach
, Problem Books in Mathematics (Springer, Cham, 2019), pp. 55–65.
35.
M.
Krawczyk
and
D.
Grundler
, “
Review and prospects of magnonic crystals and devices with reprogrammable band structure
,”
J. Phys.: Condens. Matter
26
,
32
(
2014
).
36.
K.
Baumgaertl
and
D.
Grundler
. “Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory,” arXiv:2208.10923 (
2022
).
You do not currently have access to this content.