The contribution of minority charge carriers (electrons) is taken into account in the evaluation of thermo-electromotive force (thermo-E.M.F.) of a non-degenerate p-type semiconductor in the stationary state and when the quasi-neutrality condition is fulfilled. The results obtained show that the contribution to the thermo-E.M.F. due to the presence of minority electrons is a function of the bandgap and the length of the semiconductor used. It also depends on the minority carriers through their electrical conductivity, thermal conductivity, Seebeck coefficient, and bulk and surface recombinations. That contribution tends to reduce the principal thermo-E.M.F. ( α p Δ T) of the p-type semiconductor and will, therefore, be called counter-thermo-electromotive force (counter-thermo-E.M.F.). The calculations made in the case of silicon give a counter-thermo-E.M.F. of magnitude generally non-negligible, which decreases when the length of the silicon and the concentration of doping elements increase. Finally, it is shown that the best way to minimize the counter-thermo-E.M.F. is to treat the surface of the semiconductor to promote the recombination of minority carriers there.

1.
S.
Memon
,
Advanced Thermoelectric Materials for Energy Harvesting Applications
(
BoD–Books on Demand
,
2019
).
2.
Z.
Soleimani
,
S.
Zoras
,
B.
Ceranic
,
S.
Shahzad
, and
Y.
Cui
, “
A review on recent developments of thermoelectric materials for room-temperature applications
,”
Sustain. Energy Technol. Assess.
37
,
100604
(
2020
).
3.
S.
Twaha
,
J.
Zhu
,
Y.
Yan
, and
B.
Li
, “
A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement
,”
Renew. Sust. Energy Rev.
65
,
698
726
(
2016
).
4.
C. R.
Park
,
Advanced Thermoelectric Materials
(
John Wiley & Sons
,
2019
).
5.
E.
Macia
,
Thermoelectric Materials: Advances and Applications
(
CRC Press
,
2015
).
6.
Z.
Ren
,
Y.
Lan
, and
Q.
Zhang
,
Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems
(
CRC Press
,
2017
).
7.
O.
Brand
,
G. K.
Fedder
,
C.
Hierold
,
J. G.
Korvink
, and
O.
Tabata
,
Thermoelectric Energy Conversion: Basic Concepts and Device Applications
(
John Wiley & Sons
,
2017
).
8.
N.
Hoang Pham
,
Ö.
Vallin
,
J.
Panda
,
M. V.
Kamalakar
,
J.
Guo
,
J.
Luo
,
C.
Wen
,
S.-L.
Zhang
, and
Z.-B.
Zhang
, “
High thermoelectric power factor of p-type amorphous silicon thin films dispersed with ultrafine silicon nanocrystals
,”
J. Appl. Phys.
127
(
24
),
245304
(
2020
).
9.
F.
Tohidi
,
S. G.
Holagh
, and
A.
Chitsaz
, “
Thermoelectric generators: A comprehensive review of characteristics and applications
,”
Appl. Therm. Eng.
201
,
117793
(
2022
).
10.
C. B.
Vining
, “
An inconvenient truth about thermoelectrics
,”
Nat. Mater.
8
(
2
),
83
85
(
2009
).
11.
A. S.
Kamegni
and
I.
Lashkevych
, “
The thermo-E.M.F. of an n-type silicon: Assessment of the contribution due to the presence of minority carriers
,”
Semicond. Sci. Technol.
38
(
4
),
045001
(
2023
).
12.
G. H.
Julian
,
Introduction to Thermoelectricity
(
Springer
,
Berlin
,
2016
), Vol. 121.
13.
M.
Henry
, Physique des semiconducteurs et des composants électroniques: Cours et exercices corrigés / Henry Mathieu,…Hervé Fanet,… Sciences sup Sciences de l’ingénieur. Dunod, Paris, 2001.
14.
V.
Zlatic
and
R.
Monnier
,
Modern Theory of Thermoelectricity
(
OUP
,
Oxford
,
2014
).
15.
J.-P.
Colinge
and
C. A.
Colinge
,
Physics of Semiconductor Devices
(
Springer Science & Business Media
,
2005
).
16.
B.
El Filali
,
O.
Yu Titov
, and
Y. G.
Gurevich
, “
Physics of charge transport in metal–monopolar (n-or p-type) semiconductor–metal structures
,”
J. Phys. Chem. Solids
118
,
14
20
(
2018
).
17.
M.
Lee
, “
Silicon: A revenant thermoelectric material?
,”
J. Supercond. Novel Magn.
33
(
1
),
253
257
(
2020
).
18.
D.
Narducci
and
F.
Giulio
, “
Recent advances on thermoelectric silicon for low-temperature applications
,”
Materials
15
(
3
),
1214
(
2022
).
19.
M.
Saminathan
,
J.
Palraj
,
P.
Wesley
,
M.
Moorthy
,
S.
Perumal
et al., “
Thermoelectric properties of p-type Si-rich higher manganese silicide for mid-temperature applications
,”
Mater. Lett.
302
,
130444
(
2021
).
20.
C.
Ngô
and
H.
Ngô
,
Physique des Semi-Conducteurs
,
4e ed.
(
Sciences de l’ingénieur. Dunod
,
2012
).
21.
B. G.
Streetman
and
S. K.
Banerjee
,
Solid State Electronic Devices: Global Edition
(
Pearson Education
,
2016
).
22.
R.
Couderc
,
M.
Amara
, and
M.
Lemiti
, “
Reassessment of the intrinsic carrier density temperature dependence in crystalline silicon
,”
J. Appl. Phys.
115
(
9
),
093705
(
2014
).
23.
C. D.
Thurmond
, “
The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP
,”
J. Electrochem. Soc.
122
(
8
),
1133
(
1975
).
24.
P. G.
Burke
,
B. M.
Curtin
,
J. E.
Bowers
, and
A. C.
Gossard
, “
Minority carrier barrier heterojunctions for improved thermoelectric efficiency
,”
Nano Energy
12
,
735
741
(
2015
).
25.
J.-H.
Bahk
and
A.
Shakouri
, “
Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors
,”
Phys. Rev. B
93
,
165209
(
2016
).
26.
V. F.
Gantmakher
and
Y. B.
Levinson
,
Carrier Scattering in Metals and Semiconductors
(
Elsevier
,
Amsterdam
,
2012
).
27.
M.
Lundstrom
,
Fundamentals of Carrier Transport
,
2nd ed.
(
Cambridge University Press
,
2009
).
28.
B.
Qiu
,
Z.
Tian
,
A.
Vallabhaneni
,
B.
Liao
,
J. M.
Mendoza
,
O. D.
Restrepo
,
X.
Ruan
, and
G.
Chen
, “
First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon
,”
Europhys. Lett.
109
(
5
),
57006
(
2015
).
29.
J.
Zhou
,
B.
Liao
, and
G.
Chen
, “
First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors
,”
Semicond. Sci. Technol.
31
(
4
),
043001
(
2016
).
30.
M.
Grundmann
,
Physics of Semiconductors
(
Springer
,
Cham
,
2015
).
31.
P.
Hofmann
,
Solid State Physics: An Introduction
(
Wiley-VCH Weinheim
,
Germany
,
2015
).
32.
S.
Reggiani
,
M.
Valdinoci
,
L.
Colalongo
,
M.
Rudan
, and
G.
Baccarani
, “
An analytical, temperature-dependent model for majority-and minority-carrier mobility in silicon devices
,”
VLSI Design
10
(
4
),
467
483
(
2000
).
33.
I.
Lashkevych
,
O. Y.
Titov
, and
Y. G.
Gurevich
, “
Ohm’s law for a bipolar semiconductor: The role of carrier concentration and energy nonequilibria
,”
J. Electron. Mater.
46
,
585
595
(
2016
).
34.
M.
Yao
,
M.
Zebarjadi
, and
C. P.
Opeil
, “
Experimental determination of phonon thermal conductivity and lorenz ratio of single crystal metals: Al, Cu, and Zn
,”
J. Appl. Phys.
122
(
13
),
135111
(
2017
).
35.
C. J.
Glassbrenner
and
G. A.
Slack
, “
Thermal conductivity of silicon and germanium from 3 °k to the melting point.
,”
Phys. Rev.
134
,
A1058
A1069
(
1964
).
36.
B.
Liao
,
B.
Qiu
,
J.
Zhou
,
S.
Huberman
,
K.
Esfarjani
, and
G.
Chen
, “
Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: A first-principles study
,”
Phys. Rev. Lett.
114
,
115901
(
2015
).
37.
H. M.
van Driel
, “
Kinetics of high-density plasmas generated in si by 1.06- and 0.53- μm picosecond laser pulses
,”
Phys. Rev. B
35
,
8166
8176
(
1987
).
38.
Y. G.
Gurevich
,
I.
Lashkevych
, and
A.
Siewe Kamegni
, “
Non-linear in space temperature distribution and thermo-EMF in a bipolar semiconductor
,”
Int. J. Thermophys.
43
(
8
),
1
17
(
2022
).
39.
Y. G.
Gurevich
,
J. E.
Velazquez-Perez
,
G.
Espejo-López
,
I. N.
Volovichev
, and
O. Y.
Titov
, “
Transport of nonequilibrium carriers in bipolar semiconductors
,”
J. Appl. Phys.
101
(
2
),
023705
(
2007
).
40.
J. P.
McKelvey
,
Solid State and Semiconductor Physics
(
Krieger Pub Co
,
1982
).
41.
I.
Lashkevych
and
Y. G.
Gurevich
, “
Energy flux in semiconductors: Interaction of thermal and concentration nonequilibriums
,”
Int. J. Heat Mass Transf.
92
,
430
434
(
2016
).
42.
Y. G.
Gurevich
and
I.
Lashkevych
, “
Sources of fluxes of energy, heat, and diffusion heat in a bipolar semiconductor: Influence of nonequilibrium charge carriers
,”
Int. J. Thermophys.
34
(
2
),
341
349
(
2013
).
43.
P. T.
Landsberg
,
Recombination in Semiconductors
(
Cambridge University Press
,
1992
).
44.
I. C.
Ballardo Rodriguez
,
B.
El Filali
,
O. Y.
Titov
, and
Y. G.
Gurevich
, “
Influence of thermal nonequilibrium on recombination, space charge, and transport phenomena in bipolar semiconductors
,”
Int. J. Thermophys.
41
(
5
),
1
14
(
2020
).
45.
S. S.
Li
,
Semiconductor Physical Electronics
(
Springer
,
New York
,
2006
).
46.
J. G.
Fossum
, “
Computer-aided numerical analysis of silicon solar cells
,”
Solid-State Electron.
19
(
4
),
269
277
(
1976
).
47.
I.
Lashkevych
and
Y. G.
Gurevich
, “
Linear electrical conductivity of a bipolar semiconductor: Heating and recombination
,”
Int. J. Thermophys.
37
(
1
),
1
11
(
2016
).
You do not currently have access to this content.