Cantilever-free scanning probe microscopy has enormous potential for high-throughput topography imaging using parallel probe arrays. However, the current imaging mechanism of the cantilever-free tip architecture hardly considers the efficiency of the detection method regarding precision and bandwidth, which could be a bottleneck to expanding the application of this measurement system. In this communication, we present a contact resistance-based cantilever-free imaging system using radio frequency (RF) reflectometry. RF reflectometry measurements provide sensitive detection of the contact resistance with a wide bandwidth, enabling sub-micrometer-scale topography imaging. We demonstrated our imaging system using a carbon black-polydimethylsiloxane composite tip with a custom-built RF reflectometry setup. The proof-of-concept system achieved a resolution of 230 nm and a bandwidth of the detection system of approximately 8.5 MHz, validating the feasibility of the imaging technique for potential high-throughput cantilever-free scanning probe microscopy.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
, (
2004
).
2.
G.
Binnig
,
H.
Rohrer
,
Ch.
Gerber
, and
E.
Weibel
, “
7 × 7 reconstruction on Si(111) resolved in real space
,”
Phys. Rev. Lett.
50
(
2
),
120
123
(
1983
).
3.
N.
Kodera
,
D.
Yamamoto
,
R.
Ishikawa
, and
T.
Ando
, “
Video imaging of walking myosin V by high-speed atomic force microscopy
,”
Nature
468
(
7320
),
72
76
(
2010
).
4.
G.
Binnig
,
H.
Rohrer
,
Ch.
Gerber
, and
E.
Weibel
, “
Tunneling through a controllable vacuum gap
,”
Appl. Phys. Lett.
40
(
2
),
178
180
(
1982
).
5.
G.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
, “
Atomic force microscope
,”
Phys. Rev. Lett.
56
(
9
),
930
933
(
1986
).
6.
D. A.
Walters
,
J. P.
Cleveland
,
N. H.
Thomson
,
P. K.
Hansma
,
M. A.
Wendman
,
G.
Gurley
, and
V.
Elings
, “
Short cantilevers for atomic force microscopy
,”
Rev. Sci. Instrum.
67
(
10
),
3583
3590
(
1996
).
7.
T.
Ando
,
N.
Kodera
,
E.
Takai
,
D.
Maruyama
,
K.
Saito
, and
A.
Toda
, “
A high-speed atomic force microscope for studying biological macromolecules
,”
Proc. Natl. Acad. Sci. U. S. A.
98
(
22
),
12468
12472
(
2001
).
8.
J. D.
Adams
,
B. W.
Erickson
,
J.
Grossenbacher
,
J.
Brugger
,
A.
Nievergelt
, and
G. E.
Fantner
, “
Harnessing the damping properties of materials for high-speed atomic force microscopy
,”
Nat. Nanotechnol.
11
(
2
),
147
151
(
2016
).
9.
S. C.
Minne
,
J. D.
Adams
,
G.
Yaralioglu
,
S. R.
Manalis
,
A.
Atalar
, and
C. F.
Quate
, “
Centimeter scale atomic force microscope imaging and lithography
,”
Appl. Phys. Lett.
73
(
12
),
1742
1744
(
1998
).
10.
T.
Sulchek
,
R. J.
Grow
,
G. G.
Yaralioglu
,
S. C.
Minne
,
C. F.
Quate
,
S. R.
Manalis
,
A.
Kiraz
,
A.
Aydine
, and
A.
Atalar
, “
Parallel atomic force microscopy with optical interferometric detection
,”
Appl. Phys. Lett.
78
(
12
),
1787
1789
(
2001
).
11.
P.
Vettiger
,
G.
Cross
,
M.
Despont
,
U.
Drechsler
,
U.
Durig
,
B.
Gotsmann
,
W.
Haberle
,
M. A.
Lantz
,
H. E.
Rothuizen
,
R.
Stutz
, and
G. K.
Binnig
, “
The ‘millipede’—Nanotechnology entering data storage
,”
IEEE Trans. Nanotechnol.
1
(
1
),
39
55
(
2002
).
12.
Q.
Yang
,
Q.
Ma
,
K. M.
Herum
,
C.
Wang
,
N.
Patel
,
J.
Lee
,
S.
Wang
,
T. M.
Yen
,
J.
Wang
,
H.
Tang
,
Y.-H.
Lo
,
B. P.
Head
,
F.
Azam
,
S.
Xu
,
G.
Cauwenberghs
,
A. D.
McCulloch
,
S.
John
,
Z.
Liu
, and
R.
Lal
, “
Array atomic force microscopy for real-time multiparametric analysis
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
13
),
5872
5877
(
2019
).
13.
H.
Sadeghian
,
R.
Herfst
,
B.
Dekker
,
J.
Winters
,
T.
Bijnagte
, and
R.
Rijnbeek
, “
High-throughput atomic force microscopes operating in parallel
,”
Rev. Sci. Instrum.
88
(
3
),
033703
(
2017
).
14.
W.
Cao
,
N.
Alsharif
,
Z.
Huang
,
A. E.
White
,
Y.
Wang
, and
K. A.
Brown
, “
Massively parallel cantilever-free atomic force microscopy
,”
Nat. Commun.
12
(
1
),
393
(
2021
).
15.
G.
Kim
,
E. J.
Kim
,
H. W.
Do
,
M.-K.
Cho
,
S.
Kim
,
S.
Kang
,
D.
Kim
,
J.
Cheon
, and
W.
Shim
, “
Binary-state scanning probe microscopy for parallel imaging
,”
Nat. Commun.
13
(
1
),
1438
(
2022
).
16.
F.
Huo
,
Z.
Zheng
,
G.
Zheng
,
L. R.
Giam
,
H.
Zhang
, and
C. A.
Mirkin
, “
Polymer Pen lithography
,”
Science
321
(
5896
),
1658
1660
, (
2008
).
17.
F.
Huo
,
G.
Zheng
,
X.
Liao
,
L. R.
Giam
,
J.
Chai
,
X.
Chen
,
W.
Shim
, and
C. A.
Mirkin
, “
Beam pen lithography
,”
Nat. Nanotechnol.
5
(
9
),
637
640
(
2010
).
18.
W.
Shim
,
A. B.
Braunschweig
,
X.
Liao
,
J.
Chai
,
J. K.
Lim
,
G.
Zheng
, and
C. A.
Mirkin
, “
Hard-tip, soft-spring lithography
,”
Nature
469
(
7331
),
516
520
(
2011
).
19.
R. J.
Schoelkopf
,
P.
Wahlgren
,
A. A.
Kozhevnikov
,
P.
Delsing
, and
D. E.
Prober
, “
The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer
,”
Science
280
(
5367
),
1238
1242
, (
1998
).
20.
N.
Ares
,
F. J.
Schupp
,
A.
Mavalankar
,
G.
Rogers
,
J.
Griffiths
,
G. A. C.
Jones
,
I.
Farrer
,
D. A.
Ritchie
,
C. G.
Smith
,
A.
Cottet
,
G. A. D.
Briggs
, and
E. A.
Laird
, “
Sensitive radio-frequency measurements of a quantum dot by tuning to perfect impedance matching
,”
Phys. Rev. Appl.
5
(
3
),
034011
(
2016
).
21.
Y.-Y.
Liu
,
S. G. J.
Philips
,
L. A.
Orona
,
N.
Samkharadze
,
T.
McJunkin
,
E. R.
MacQuarrie
,
M. A.
Eriksson
,
L. M. K.
Vandersypen
, and
A.
Yacoby
, “
Radio-frequency reflectometry in silicon-based quantum dots
,”
Phys. Rev. Appl.
16
(
1
),
014057
(
2021
).
22.
U.
Kemiktarak
,
T.
Ndukum
,
K. C.
Schwab
, and
K. L.
Ekinci
, “
Radio-frequency scanning tunnelling microscopy
,”
Nature
450
(
7166
),
85
88
(
2007
).
23.
K.
Miyasaka
,
K.
Watanabe
,
E.
Jojima
,
H.
Aida
,
M.
Sumita
, and
K.
Ishikawa
, “
Electrical conductivity of carbon-polymer composites as a function of carbon content
,”
J. Mater. Sci.
17
(
6
),
1610
1616
(
1982
).
24.
M.
Knite
,
V.
Teteris
,
B.
Polyakov
, and
D.
Erts
, “
Electric and elastic properties of conductive polymeric nanocomposites on macro- and nanoscales
,”
Mater. Sci. Eng., C
19
(
1
),
15
19
(
2002
).
25.
G.
Kim
,
S.
Cho
,
K.
Chang
,
W. S.
Kim
,
H.
Kang
,
S.-P.
Ryu
,
J.
Myoung
,
J.
Park
,
C.
Park
, and
W.
Shim
, “
Spatially pressure-mapped thermochromic interactive sensor
,”
Adv. Mater.
29
(
13
),
1606120
(
2017
).
26.
M. M.
Tunesi
,
R. A.
Soomro
,
X.
Han
,
Q.
Zhu
,
Y.
Wei
, and
B.
Xu
, “
Application of MXenes in environmental remediation technologies
,”
Nano Converg.
8
(
1
),
5
(
2021
).
27.
A.
Iqbal
,
J.
Hong
,
T. Y.
Ko
, and
C. M.
Koo
, “
Improving oxidation stability of 2D MXenes: Synthesis, storage media, and conditions
,”
Nano Converg.
8
(
1
),
9
(
2021
).
28.
A. H.-T.
Nguyen
,
M.-C.
Nguyen
,
S.
Cho
,
A.-D.
Nguyen
,
H.
Kim
,
Y.
Seok
,
J.
Yoon
, and
R.
Choi
, “
Double-gate thin film transistor with suspended-gate applicable to tactile force sensor
,”
Nano Converg.
7
(
1
),
31
(
2020
).
29.
Y.
Liu
,
E.
Mu
,
Z.
Wu
,
Z.
Che
,
F.
Sun
,
X.
Fu
,
F.
Wang
,
X.
Wang
, and
Z.
Hu
, “
Ultrathin MEMS thermoelectric generator with Bi2Te3/(Pt, Au) multilayers and Sb2Te3 legs
,”
Nano Converg.
7
(
1
),
8
(
2020
).
30.
X.
Liao
,
A. B.
Braunschweig
,
Z.
Zheng
, and
C. A.
Mirkin
, “
Force- and time-dependent feature size and shape control in molecular printing via polymer-pen lithography
,”
Small
6
(
10
),
1082
1086
(
2010
).
31.
L. V.
Kayser
and
D. J.
Lipomi
, “
Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS
,”
Adv. Mater.
31
(
10
),
1806133
(
2019
).
32.
C.
Yang
and
Z.
Suo
, “
Hydrogel ionotronics
,”
Nat. Rev. Mater.
3
(
6
),
125
142
(
2018
).
33.
H.
Im
and
S.-H.
Oh
, “
Oxidation sharpening, template stripping, and passivation of ultra-sharp metallic pyramids and wedges
,”
Small
10
(
4
),
680
684
(
2014
).
You do not currently have access to this content.