In laser-spot lock-in thermography, the amplitude of the surface temperature decreases monotonically with the distance to the laser spot. This radial decrease is commonly used to measure the in-plane thermal diffusivity of the sample. However, in the case of thermal insulators, an unpredicted and abrupt slope change appears in the radial profiles. In this work, we first demonstrate that heat conduction to the air surrounding the sample is the cause of this unexpected behavior. Then, we take advantage of this slope change to retrieve simultaneously in-plane thermal diffusivity and conductivity of thermal insulators.

1.
C. S.
Welch
,
D. M.
Heath
, and
W. P.
Winfree
, “
Remote measurement of in-plane diffusivity components in plates
,”
J. Appl. Phys.
61
,
895
898
(
1987
).
2.
A.
Salazar
,
A.
Sánchez-Lavega
,
A.
Ocáriz
,
J.
Guitonny
,
G. C.
Pandey
,
D.
Fournier
, and
A. C.
Boccara
, “
Thermal diffusivity of anisotropic materials by photothermal methods
,”
J. Appl. Phys.
79
,
3984
(
1996
).
3.
L.
Fabbri
and
P.
Fenici
, “
Three-dimensional photothermal radiometry for the determination of the thermal diffusivity of solids
,”
Rev. Sci. Instrum.
66
,
3593
3600
(
1995
).
4.
B.
Zhang
and
R. E.
Imhof
, “
Theoretical analysis of the surface thermal wave technique for measuring the thermal diffusivity of thin plates
,”
Appl. Phys. A
62
,
323
334
(
1996
).
5.
A.
Wolf
,
P.
Pohl
, and
R.
Brendel
, “
Thermophysical analysis of thin films by lock-in thermography
,”
J. Appl. Phys.
96
,
6306
6312
(
2004
).
6.
P. W.
Nolte
,
T.
Malvisalo
,
F.
Wagner
, and
S.
Schweizer
, “
Thermal diffusivity of metals determined by lock-in thermography
,”
Quantitative InfraRed Thermogr. J.
14
,
218
225
(
2017
).
7.
A.
Bedoya
,
E.
Marín
,
J. J.
Puldón
, and
C.
García-Segundo
, “
On the thermal characterization of insulating solids using laser-spot thermography in a front detection configuration
,”
Int. J. Thermophys.
44
,
27
(
2023
).
8.
L. C.
Aamodt
and
J. C.
Murphy
, “
Photothermal measurements using a localized excitation source
,”
J. Appl. Phys.
52
,
4903
4914
(
1981
).
9.
Y. A.
Çengel
,
Heat Transfer: A Practical Approach
(
McGraw-Hill
,
Boston
,
2003
).
10.
A.
Salazar
,
A.
Mendioroz
,
R.
Fuente
, and
R.
Celorrio
, “
Accurate measurements of the thermal diffusivity of thin filaments by lock-in thermography
,”
J. Appl. Phys.
107
,
043508
(
2010
).
11.
A.
Salazar
, “
On thermal diffusivity
,”
Eur. J. Phys.
24
,
351
358
(
2003
).
12.
E.
Marín
, “
Thermal physics concepts: The role of the thermal effusivity
,”
Phys. Teach.
44
,
432
434
(
2006
).
13.
D. P.
Almond
and
P. M.
Patel
,
Photothermal Science and Techniques
(
Chapman & Hall
,
London
,
1996
), p.
15
.
14.
See http://www.goodfellow.com Goodfellow catalogue.
15.
J.
Zhou
,
H.
Zhou
,
C.
Hu
, and
S.
Hu
, “
Measurements of thermal and dielectric properties of medium density fiberboard with different moisture content
,”
BioResources
8
,
4185
4192
(
2013
).
16.
J.
Tippner
,
E.
Troppová
,
R.
Hrčka
,
P.
Halachan
,
R.
Lagaňa
,
V.
Sebera
, and
M.
Trcala
, “Probabilistic numerical analysis of quasi-stationary thermal measurement of medium density fiberboard,” in
Proceedings of the 57th International Convention of Society of Wood Science and Technology Zvolen
, edited by H. M. Barnes and V. L. Herian (2014), p. 878.
You do not currently have access to this content.