Atmospheric repetitive He discharge with 10 ns current peak width and 3 × 10 11 V/s voltage front rise working in jet geometry is studied. This part deals with the ionization waves, electron density, and electric field dynamics. The electron density (n e) is measured by Stark broadening of the H Balmer  β (H β) and He emission lines, the electric field is analyzed using Stark polarization spectroscopy, and the ionization waves are studied by fast imaging. We found that the ionization fronts propagate in the quartz tube with a velocity of about 5 × 10 5 m/s; this velocity slowly decreases along the tube but may jump in the open air at some conditions. In the space between electrodes, n e increases rapidly at the beginning, reaching about 7 × 10 15 cm 3, which corresponds to electron avalanche defining the discharge current peak. In the tube, the electrons are concentrated in the ionization wavefronts having low density ( < 10 14 cm 3). Before the avalanche, a macroscopic (electrode-induced) electric field dominates between the electrodes peaking at about 8 kV/cm as deduced from H β peak splitting, whereas during the avalanche, H β reveals a double-Lorentzian polarization-insensitive profile imposed by two electron populations. In the low-density electron group, n e does not exceed 10 14 cm 3, whereas the high-density group is responsible for the observed electron density peak formation. After a rapid decay of the electrode-induced field, the microscopic electric field (induced by space-charge) dominates, peaking at about 25 kV/cm after the electron density peak. Certain electric field anisotropy is also detected in the quartz tube, confirming the wavefront propagation.

1.
V. F.
Tarasenko
,
C.
Zhang
,
E. K.
Baksht
,
A. G.
Burachenko
,
T.
Shao
,
D. V.
Beloplotov
,
M. I.
Lomaev
,
P.
Yan
,
A. V.
Kozyrev
, and
N. S.
Semeniuk
,
Matter. Radiat. Extremes
2
,
105
(
2017
).
2.
V.
Tarasenko
,
V.
Skakun
,
I.
Kostyrya
,
S.
Alekseev
, and
V.
Orlovkii
,
Laser Part. Beams
22
,
75
82
(
2004
).
3.
S. B.
Alekseev
,
V. M.
Orlovskii
,
V. F.
Tarasenko
,
A. N.
Tkachev
, and
S. I.
Yakovlenko
,
Tech. Phys. Lett.
29
,
679
(
2003
).
4.
C. T. R.
Wilson
,
Proc. Phys. Soc. Lond.
37
,
32D
(
1924
).
5.
L. M.
Vasilyak
,
S. V.
Kostyuchenko
,
N. N.
Kudryavtsev
, and
I. V.
Filyugin
,
Phys.-Usp.
37
,
247
(
1994
).
6.
E. H.
Baksht
,
A. G.
Burachenko
,
I. D.
Kostyrya
,
M. I.
Lomaev
,
D. V.
Rybka
,
M. A.
Shulepov
, and
V. F.
Tarasenko
,
J. Phys. D: Appl. Phys.
42
,
185201
(
2009
).
7.
P.
Viegas
,
E.
Slikboer
,
Z.
Bonaventura
,
O.
Guaitella
,
A.
Sobota
, and
A.
Bourdon
,
Plasma Sources Sci. Technol.
31
,
053001
(
2022
).
9.
W. P.
Winn
,
J. Appl. Phys.
38
,
783
(
1967
).
10.
E. I.
Asinovskiy
,
L. M.
Vasilyak
, and
V. V.
Markovets
,
Teplofizika Visokih Temperatur
21
,
371
(
1983
) (in Russian).
11.
J. J.
Thomson
,
Recent Researches in Electricity and Magnetism
(
Clarendon, Oxford
,
1893
).
12.
L. B.
Snoddy
,
J. R.
Dietrich
, and
J. W.
Beams
,
Phys. Rev.
52
,
739
(
1937
).
13.
J. W.
Beams
,
Phys. Rev.
28
,
475
(
1926
).
14.
R. G.
Westberg
,
Phys. Rev.
114
,
1
(
1959
).
15.
N. B.
Anikin
,
S. M.
Starikovskaia
, and
A. Y.
Starikovskii
,
J. Phys. D: Appl. Phys.
34
,
177
(
2001
).
16.
T.
Tang
,
H.
Lee
,
H.
Kim
,
G.
Kim
,
B.
Lee
,
H.
Kim
, and
H.
Lee
,
Curr. Appl. Phys.
29
,
9
(
2021
).
17.
S. V.
Pancheshnyi
,
S. M.
Starikovskaia
, and
A. Y.
Starikovskii
,
J. Phys. D: Appl. Phys.
32
,
2219
(
1999
).
18.
N. B.
Anikin
,
S. M.
Starikovskaia
, and
A. Y.
Starikovskii
,
J. Phys. D: Appl. Phys.
35
,
2785
(
2002
).
19.
N. B.
Anikin
,
S. V.
Pancheshnyi
,
S. M.
Starikovskaia
, and
A. Y.
Starikovskii
,
J. Phys. D: Appl. Phys.
31
,
826
(
1998
).
20.
X.
Lu
and
M.
Laroussi
,
J. Appl. Phys.
100
,
063302
(
2006
).
21.
B. L.
Sands
,
B. N.
Ganguly
, and
K.
Tachibana
,
Appl. Phys. Lett.
92
,
151503
(
2008
).
22.
N.
Mericam-Bourdet
,
M.
Laroussi
,
A.
Begum
, and
E.
Karakas
,
J. Phys. D: Appl. Phys.
42
,
055207
(
2009
).
23.
M.
Yousfi
,
O.
Eichwald
,
N.
Merbahi
, and
N.
Jomaa
,
Plasma Sources Sci. Technol.
21
,
045003
(
2012
).
24.
D. A.
Lacoste
,
A.
Bourdon
,
K.
Kuribara
,
K.
Urabe
,
S.
Stauss
, and
K.
Terashima
,
Plasma Sources Sci. Technol.
23
,
062006
(
2014
).
25.
S.
Wu
,
X.
Lu
, and
Y.
Pan
,
Phys. Plasmas
21
,
073509
(
2014
).
26.
S.
Wu
,
X.
Lu
,
Y.
Yue
,
X.
Dong
, and
X.
Pei
,
Phys. Plasmas
23
,
103506
(
2016
).
27.
R.
Morrow
and
J. J.
Lowke
,
J. Phys. D: Appl. Phys.
30
,
614
(
1997
).
28.
G. G.
Hudson
and
L. B.
Loeb
,
Phys. Rev.
123
,
29
(
1961
).
29.
G. W.
Paxton
and
R. G.
Fowler
,
Phys. Rev.
128
,
993
(
1962
).
30.
Z.
Xiong
,
X.
Lu
,
Y.
Xian
,
Z.
Jiang
, and
Y.
Pan
,
J. Appl. Phys.
108
,
103303
(
2010
).
31.
K.
Orr
,
Y.
Tang
,
M. S.
Simeni
,
D.
van den Bekerom
, and
I. V.
Adamovich
,
Plasma Sources Sci. Technol.
29
,
035019
(
2020
).
32.
G. B.
Sretenović
,
I. B.
Krstić
,
V. V.
Kovačević
,
B. M.
Obradović
, and
M. M.
Kuraica
,
J. Phys. D: Appl. Phys.
47
,
102001
(
2014
).
33.
A.
Sobota
,
O.
Guaitella
,
G. B.
Sretenović
,
I. B.
Krstić
,
V. V.
Kovačević
,
A.
Obrusník
,
Y. N.
Nguyen
,
L.
Zajíčková
,
B. M.
Obradović
, and
M. M.
Kuraica
,
Plasma Sources Sci. Technol.
25
,
065026
(
2016
).
34.
M.
van der Schans
,
P.
Böhm
,
J.
Teunissen
,
S.
Nijdam
,
W.
IJzerman
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
26
,
115006
(
2017
).
35.
P.
Olszewski
,
E.
Wagenaars
,
K.
McKay
,
J. W.
Bradley
, and
J. L.
Walsh
,
Plasma Sources Sci. Technol.
23
,
015010
(
2014
).
36.
C.
Jiang
,
M. T.
Chen
, and
M. A.
Gundersen
,
J. Phys. D: Appl. Phys.
42
,
232002
(
2009
).
37.
S.
Hübner
,
S.
Hofmann
,
E. M.
van Veldhuizen
, and
P. J.
Bruggeman
,
Plasma Sources Sci. Technol.
22
,
065011
(
2013
).
38.
S.
Hübner
,
J. S.
Sousa
,
V.
Puech
,
G. M. W.
Kroesen
, and
N.
Sadeghi
,
J. Phys. D: Appl. Phys.
47
,
432001
(
2014
).
39.
C.
Jiang
,
J.
Miles
,
J.
Hornef
,
C.
Carter
, and
S.
Adams
,
Plasma Sources Sci. Technol.
28
,
085009
(
2019
).
40.
A. M.
Lietz
,
E. V.
Barnat
,
J. E.
Foster
, and
M. J.
Kushner
,
J. Appl. Phys.
128
,
083301
(
2020
).
41.
M.
Mirzaee
,
M.
Simeni Simeni
, and
P. J.
Bruggeman
,
Phys. Plasmas
27
,
123505
(
2020
).
42.
M.
Hofmans
,
P.
Viegas
,
O.
van Rooij
,
B.
Klarenaar
,
O.
Guaitella
,
A.
Bourdon
, and
A.
Sobota
,
Plasma Sources Sci. Technol.
29
,
034003
(
2020
).
43.
F.
Wu
,
J.
Li
,
Y.
Xian
,
X.
Tan
, and
X.
Lu
,
Plasma Process. Polym.
18
,
2100033
(
2021
).
44.
G. B.
Sretenović
,
O.
Guaitella
,
A.
Sobota
,
I. B.
Krstić
,
V. V.
Kovačević
,
B. M.
Obradović
, and
M. M.
Kuraica
,
J. Appl. Phys.
121
,
123304
(
2017
).
45.
Q.
Li
,
W.-C.
Zhu
,
X.-M.
Zhu
, and
Y.-K.
Pu
,
J. Phys. D: Appl. Phys.
43
,
382001
(
2010
).
46.
K.
Niemi
,
J.
Waskoenig
,
N.
Sadeghi
,
T.
Gans
, and
D.
O’Connell
,
Plasma Sources Sci. Technol.
20
,
055005
(
2011
).
47.
B.
Obradović
,
M.
Ivković
,
S.
Ivković
,
N.
Cvetanović
,
G.
Sretenović
,
V.
Kovačević
,
I.
Krstić
, and
M.
Kuraica
,
Astrophys. Space Sci.
361
,
42
(
2015
).
48.
K.
Takashima
,
I. V.
Adamovich
,
Z.
Xiong
,
M. J.
Kushner
,
S.
Starikovskaia
,
U.
Czarnetzki
, and
D.
Luggenhölscher
,
Phys. Plasmas
18
,
083505
(
2011
).
49.
S.
Hofmann
,
A. F. H.
van Gessel
,
T.
Verreycken
, and
P.
Bruggeman
,
Plasma Sources Sci. Technol.
20
,
065010
(
2011
).
50.
J.
Faltýnek
,
J.
Hnilica
, and
V.
Kudrle
,
Plasma Sources Sci. Technol.
26
,
015010
(
2016
).
51.
M. A.
Gigosos
,
M.
Á. González
, and
V.
Cardeñoso
,
Spectrochim. Acta, Part B
58
,
1489
(
2003
).
52.
N.
Britun
,
P. R.
Dennis Christy
,
V.
Gamaleev
, and
M.
Hori
,
Plasma Sources Sci. Technol.
31
,
125012
(
2022
).
53.
V.
Gamaleev
,
N.
Shimizu
, and
M.
Hori
,
Rev. Sci. Instrum.
93
,
053503
(
2022
).
54.
N.
Shimizu
,
T.
Sekiya
,
K.
Iida
,
Y.
Imanishi
,
M.
Kimura
, and
J.
Nishizawa
, in
2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs
(IEEE, 2004), pp. 281–284.
55.
R.
Payling
and
P. L.
Larkins
,
Optical Emission Lines of the Elements
(
Wiley, Chichester
,
2000
).
56.
R. W. B.
Pearce
and
A. G.
Gaydon
,
The Identification of Molecular Spectra
,
2nd ed.
(
Chapmann and Hall, London
,
1950
).
57.
W. L.
Wiese
,
D. E.
Kelleher
, and
D. R.
Paquette
,
Phys. Rev. A
6
,
1132
(
1972
).
58.
N.
Konjević
,
M.
Ivković
, and
N.
Sakan
, Spectrochim.
Acta, Part B
76
,
16
(
2012
).
59.
M.
Ivković
,
N.
Konjević
, and
Z.
Pavlović
,
J. Quant. Spectrosc. Radiat. Transfer
154
,
1
(
2015
).
60.
Z.
Mijatović
,
S.
Djurović
,
L.
Gavanski
,
T.
Gajo
,
A.
Favre
,
V.
Morel
, and
A.
Bultel
,
Spectrochim. Acta, Part B
166
,
105821
(
2020
).
61.
C. G.
Parigger
,
L. D.
Swafford
,
D. M.
Surmick
,
M. J.
Witte
,
A. C.
Woods
, and
G.
Gautam
,
J. Phys.: Conf. Ser.
548
,
012043
(
2014
).
62.
R.
Mewe
,
Br. J. Appl. Phys.
18
,
107
(
1967
).
63.
H.
Griem
,
Principles of Plasma Spectroscopy
(
Cambridge University Press, Cambridge
,
1997
).
64.
I.
Videnović
,
N.
Konjević
, and
M.
Kuraica
,
Spectrochim. Acta, Part B
51
,
1707
(
1996
).
65.
A. Y.
Nikiforov
,
C.
Leys
,
M. A.
Gonzalez
, and
J. L.
Walsh
,
Plasma Sources Sci. Technol.
24
,
034001
(
2015
).
66.
J.
Torres
,
J.
Palomares
,
M.
Gigosos
,
A.
Gamero
,
A.
Sola
, and
J.
van der Mullen
,
Spectrochim. Acta, Part B
63
,
939
(
2008
).
67.
A. C.
Mitchell
and
M. W.
Zemansky
,
Resonance Radiation and Excited Atoms
,
2nd ed.
(
Cambridge University Press, Cambridge
,
1961
).
68.
Q.
Xiong
,
A. Y.
Nikiforov
,
M. Á.
González
,
C.
Leys
, and
X. P.
Lu
,
Plasma Sources Sci. Technol.
22
,
015011
(
2013
).
69.
N.
Konjević
,
Phys. Rep.
316
,
339
(
1999
).
70.
S.
Djurović
and
N.
Konjević
,
Plasma Sources Sci. Technol.
18
,
035011
(
2009
).
71.
Q.
Xiong
,
A.
Nikiforov
,
N.
Britun
,
R.
Snyders
,
C.
Leys
, and
X.
Lu
,
J. Appl. Phys.
110
,
073302
(
2011
).
72.
E.
Whiting
,
J. Quant. Spectrosc. Radiat. Transfer
8
,
1379
(
1968
).
73.
M. A.
Gigosos
,
S.
Djurović
,
I.
Savić
,
D.
González-Herrero
,
Z.
Mijatović
, and
R.
Kobilarov
,
Astron. Astrophys.
561
,
A135
(
2014
).
74.
S. J.
Foster
and
N.
Bohr
,
Proc. R. Soc. London, Ser. A
117
,
137
(
1927
).
75.
M. M.
Kuraica
and
N.
Konjević
,
Appl. Phys. Lett.
70
,
1521
(
1997
).
76.
M. M.
Kuraica
, Ph.D. thesis (University of Belgrade, Serbia, 1998) (in Serbian).
77.
N.
Cvetanović
,
M. M.
Martinović
,
B. M.
Obradović
, and
M. M.
Kuraica
,
J. Phys. D: Appl. Phys.
48
,
205201
(
2015
).
78.
G. B.
Sretenović
, private communication (2022).
79.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
,
2nd ed.
(
Cambridge University Press, Cambridge
,
1992
).
80.
Y. P.
Raizer
, Gas Discharge Physics, 1st ed., edited by J. E. Allen (Springer-Verlag, Berlin, 1991).
81.
A.
Peisert
and
F.
Sauli
, Drift and Diffusion of Electrons in Gases: A Compilation, CERN Yellow Reports: Monographs (CERN, Geneva, 1984).
82.
N.
Britun
,
V.
Gamaleev
, and
M.
Hori
, “Diagnostics of a nanosecond atmospheric plasma jet. Time-resolved kinetics of He metastable atoms,” Plasma Sources Sci. Technol. (submitted) (2023).
83.
S.
Yatom
,
E.
Stambulchik
,
V.
Vekselman
, and
Y. E.
Krasik
,
Phys. Rev. E
88
,
013107
(
2013
).
84.
A.
Czernichowski
and
J.
Chapelle
,
J. Quant. Spectrosc. Radiat. Transfer
33
,
427
(
1985
).

Supplementary Material

You do not currently have access to this content.