Sapphire has increasing demand toward optoelectrical devices like LED; its big challenge is to find reasonable growth mechanisms for high quality large size single crystals. In this paper, we proposed both theoretical and experimental studies to clarify multiscale behaviors within the Al2O3 growth system. Molecular dynamics simulation for sapphire crystal growth along c-, a-, and m-axes, and solid–liquid interface structure, and grown 2″ sapphire via the Czochralski method along the c-axis, were reported herein. Our studies show that α-Al2O3 growth behaviors along different crystal directions are different, which is different from the amorphous Al2O3 phase transition at the various α-Al2O3 planes. α-Al2O3 crystal growth in the c-axis system may be a complex process involving solid–liquid and solid–solid transformations, rather than a single solid–liquid transformation that happened in the systems growing along the a- and m-axes. Within the time scale of simulation, the crystals cannot be grown by the lattice period of the seed crystal along the c-axis and transform into γ-Al2O3 rather than α-Al2O3, while it is opposite along the a- and m-axes. This may be the microscopic reason why it is difficult to grow sapphire along the c-axis in the experiment. An abrupt change in the interfacial structure is the key reason to inhibit the transformation of liquid Al2O3 into α-Al2O3 along the c-axis.

1.
F.
Zhengming
and
E.
Culurciello
, in 2006
IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
Piscataway, NJ
,
2006
), p.
4
.
2.
F. J.
Bruni
,
Cryst. Res. Technol.
50
,
133
142
(
2015
).
3.
R.
Aad
,
S.
Blaize
,
A.
Bruyant
,
C.
Couteau
, and
G.
Lérondel
,
J. Appl. Phys.
108
,
123111
(
2010
).
4.
J.
Harper
, “
Developments in producing optical sapphire windows of extreme environments in large scale, photonic fiber an crystal devices
,” in
Advances in Materials and Innovations in Device Applications XV
,
San Diego, CA
, 2021 (
2021
).
5.
N.
Zhang
,
H. G.
Park
, and
J. J.
Derby
,
J. Cryst. Growth
367
,
27
34
(
2013
).
6.
W. J.
Lee
,
Y. C.
Lee
,
H. H.
Jo
, and
Y. H.
Park
,
J. Cryst. Growth
324
,
248
254
(
2011
).
7.
H.
Li
,
E. A.
Ghezal
,
A.
Nehari
,
G.
Alombert-Goget
,
A.
Brenier
, and
K.
Lebbou
,
Opt. Mater.
35
,
1071
1076
(
2013
).
8.
M. S.
Akselrod
and
F. J.
Bruni
,
J. Cryst. Growth
360
,
134
145
(
2012
).
9.
D.-S.
Wuu
,
H.-W.
Wu
,
S.-T.
Chen
,
T.-Y.
Tsai
,
X.
Zheng
, and
R.-H.
Horng
,
J. Cryst. Growth
311
,
3063
3066
(
2009
).
10.
C.
Sun
and
D.
Xue
,
Cryst. Growth Des.
14
,
2282
2287
(
2014
).
11.
J. C.
Brice
,
J. Cryst. Growth
6
,
205
206
(
1970
).
12.
D.
Xu
and
D.
Xue
,
J. Cryst. Growth
286
,
108
113
(
2006
).
13.
C. T.
Sun
and
D. F.
Xue
,
Mater. Technol.
28
,
286
289
(
2013
).
14.
J. Q.
Broughton
,
G. H.
Gilmer
, and
K. A.
Jackson
,
Phys. Rev. Lett.
49
,
1496
(
1982
).
15.
G.
Sun
,
J.
Xu
, and
P.
Harrowell
,
Nat. Mater.
17
,
881
886
(
2018
).
16.
R.
Freitas
and
E. J.
Reed
,
Nat. Commun.
11
,
3260
(
2020
).
17.
Q.
Gao
,
J.
Ai
,
S.
Tang
,
M.
Li
,
Y.
Chen
,
J.
Huang
,
H.
Tong
,
L.
Xu
,
L.
Xu
,
H.
Tanaka
, and
P.
Tan
,
Nat. Mater.
20
,
1431
(
2021
).
18.
Y.-C.
Hu
and
H.
Tanaka
,
Nat. Commun.
13
,
4519
(
2022
).
20.
21.
L. B.
Skinner
,
A. C.
Barnes
,
P. S.
Salmon
,
L.
Hennet
,
H. E.
Fischer
,
C. J.
Benmore
,
S.
Kohara
,
J. K. R.
Weber
,
A.
Bytchkov
,
M. C.
Wilding
,
J. B.
Parise
,
T. O.
Farmer
,
I.
Pozdnyakova
,
S. K.
Tumber
, and
K.
Ohara
,
Phys. Rev. B
87
,
024201
(
2013
).
22.
J.
Du
and
L.
René Corrales
,
J. Non-Cryst. Solids
353
,
210
214
(
2007
).
23.
M.
Tane
,
H.
Kimizuka
, and
T.
Ichitsubo
,
J. Chem. Phys.
144
,
194505
(
2016
).
24.
L. W.
Finger
and
R. M.
Hazen
,
J. Appl. Phys.
49
,
5823
5826
(
1978
).
25.
S.
Krishnan
,
J. K. R.
Weber
,
J. J.
Felten
,
P. C.
Nordine
,
M. A.
Beno
,
D. L.
Price
,
M.-L.
Saboungi
, and
S.
Ansell
,
Phys. Rev. Lett.
78
,
464
466
(
1997
).
26.
C. G.
Levi
,
V.
Jayaram
,
J. J.
Valencia
, and
R.
Mehrabian
,
J. Mater. Res.
3
,
969
983
(
1988
).
27.
J. K. R.
Weber
,
C. D.
Anderson
,
D. R.
Merkley
, and
P. C.
Nordine
,
J. Am. Ceram. Soc.
78
,
577
582
(
1995
).
28.
M. A.
San Miguel
,
J.
Fernández Sanz
,
L. J.
Álvarez
, and
J. A.
Odriozola
,
Phys. Rev. B
58
,
2369
2371
(
1998
).
29.
G.
Gutiérrez
,
A. B.
Belonoshko
,
R.
Ahuja
, and
B.
Johansson
,
Phys. Rev. E
61
,
2723
2729
(
2000
).
30.
J. R.
Morris
,
C. Z.
Wang
,
K. M.
Ho
, and
C. T.
Chan
,
Phys. Rev. B
49
,
3109
3115
(
1994
).
31.
J. R.
Morris
and
X.
Song
,
J. Chem. Phys.
116
,
9352
9358
(
2002
).
32.
D. Y.
Sun
,
M.
Asta
, and
J. J.
Hoyt
,
Phys. Rev. B
69
,
024108
(
2004
).
33.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
34.
C.
Landron
,
A. K.
Soper
,
T. E.
Jenkins
,
G. N.
Greaves
,
L.
Hennet
, and
J. P.
Coutures
,
J. Non-Cryst. Solids
293–295
,
453
457
(
2001
).
35.
C. T.
Le
,
T. T.
Nguyen
,
T. T.
Nguyen
, and
V. V.
Le
,
Vacuum
167
,
175
181
(
2019
).
36.
M.
Ohkubo
and
Y.
Seno
,
Philos. Mag. Lett.
59
,
171
179
(
1989
).
37.
N.
Yu
,
P. C.
McIntyre
,
M.
Nastasi
, and
K. E.
Sickafus
,
Phys. Rev. B
52
,
17518
17522
(
1995
).
39.
T. W.
Simpson
,
Q.
Wen
,
N.
Yu
, and
D. R.
Clarke
,
J. Am. Ceram. Soc.
81
,
61
66
(
1998
).
40.
R.
Liu
,
O.
Elleuch
,
Z.
Wan
,
P.
Zuo
,
T. D.
Janicki
,
A. D.
Alfieri
,
S. E.
Babcock
,
D. E.
Savage
,
J. R.
Schmidt
,
P. G.
Evans
, and
T. F.
Kuech
,
ACS Appl. Mater. Interfaces
12
,
57598
57608
(
2020
).
41.
W. D.
Kaplan
and
Y.
Kauffmann
,
Annu. Rev. Mater. Res.
36
,
1
48
(
2006
).
42.
Y.
Yang
,
D. L.
Olmsted
,
M.
Asta
, and
B. B.
Laird
,
Acta Mater.
60
,
4960
4971
(
2012
).
43.
C. W.
White
,
C. J.
McHargue
,
P. S.
Sklad
,
L. A.
Boatner
, and
G. C.
Farlow
,
Mater. Sci. Rep.
4
,
41
146
(
1989
).
44.
J. D.
Budai
,
C. W.
White
,
S. P.
Withrow
,
M. F.
Chisholm
,
J.
Zhu
, and
R. A.
Zuhr
,
Nature
390
,
384
386
(
1997
).

Supplementary Material

You do not currently have access to this content.