Interest in the phenomenon of dielectrophoresis has gained significant attention in recent years due to its potential for sorting, manipulation, and trapping of solutes, such as proteins, in aqueous solutions. For many decades, protein dielectrophoresis was considered impossible, as the predicted magnitude of the force arising from experimentally accessible field strengths could not out-compete thermal energy. This conclusion was drawn from the mainstay Clausius–Mossotti (CM) susceptibility applied to the dielectrophoretic force. However, dielectric interfacial polarization leading to the CM result does not account for a large protein dipole moment that is responsible for the dipolar mechanism of dielectrophoresis outcompeting the CM induction mechanism by three to four orders of magnitude in the case of proteins. Here, we propose an explicit geometry within which the dipolar susceptibility may be put to the test. The electric field and dielectrophoretic force are explicitly calculated, and the dependence of the trapping distance on the strength of the applied field is explored. A number of observable distinctions between the dipolar and induction mechanisms are identified.

1.
H. A.
Pohl
,
Dielectrophoresis. The Behavior of Neutral Matter in Nonuniform Electric Fields
(
Cambridge University Press
,
Cambridge
,
1978
).
2.
B. K. P.
Scaife
,
Principles of Dielectrics
(
Clarendon Press
,
Oxford
,
1998
).
3.
R.
Pethig
,
J. Electrochem. Soc.
164
,
B3049
(
2017
).
4.
R.
Pethig
,
Dielectrophoresis. Theory, Methodology and Biological Applications
(
Wiley
,
Hoboken, NJ
,
2017
).
5.
S. R.
de Groot
and
P.
Mazur
,
Nonequilibrium Thermodynamics
(
North-Holland Publishing Co.
,
Amsterdam
,
1963
).
6.
D.
Reguera
,
J. M.
Rubí
, and
J. M. G.
Vilar
,
J. Phys. Chem. B
109
,
21502
(
2005
).
7.
J.
Israelachvili
,
Intermolecular & Surface Forces
(
Academic Press
,
Amsterdam
,
1991
).
8.
D. V.
Matyushov
,
Manual for Theoretical Chemistry
(
World Scientific Publishing Co. Pte. Ltd.
,
New Jersey
,
2021
).
9.
J. D.
Jackson
,
Classical Electrodynamics
,
3rd ed.
(
Wiley
,
New York
,
1999
).
10.
X.
Xuan
,
Electrophoresis
40
,
2484
(
2019
).
11.
R.
Hölzel
and
R.
Pethig
,
Micromachines
11
,
533
(
2020
).
12.
R.
Hölzel
and
R.
Pethig
,
Electrophoresis
42
,
513
(
2020
).
13.
A.
Castellanos
,
A.
Ramos
,
A.
González
,
N. G.
Green
, and
H.
Morgan
,
J. Phys. D: Appl. Phys.
36
,
2584
(
2003
).
14.
A.
Nakano
,
T.-C.
Chao
,
F.
Camacho-Alanis
, and
A.
Ros
,
Electrophoresis
32
,
2314
(
2011
).
15.
Z.
Cao
,
Y.
Zhu
,
Y.
Liu
,
S.
Dong
,
X.
Chen
,
F.
Bai
,
S.
Song
, and
J.
Fu
,
Small
14
,
1703265
(
2018
).
16.
A.
Barik
,
X.
Chen
, and
S.-H.
Oh
,
Nano Lett.
16
,
6317
(
2016
).
17.
A.
Henriksson
,
P.
Neubauer
, and
M.
Birkholz
,
Biosensors
12
,
784
(
2022
).
18.
T.
Yamamoto
and
T.
Fujii
,
Nanotechnology
18
,
495503
(
2007
).
19.
M.
Washizu
,
S.
Suzuki
,
O.
Kurosawa
,
T.
Nishizaka
, and
T.
Shinohara
,
IEEE Trans. Ind. Appl.
30
,
835
(
1994
).
20.
R. W.
Clarke
,
S. S.
White
,
D.
Zhou
,
L.
Ying
, and
D.
Klenerman
,
Angew. Chem. Int. Ed.
44
,
3747
(
2005
).
21.
D. V.
Matyushov
,
J. Chem. Phys.
136
,
085102
(
2012
).
22.
R.
Hölzel
,
N.
Calander
,
Z.
Chiragwandi
,
M.
Willander
, and
F. F.
Bier
,
Phys. Rev. Lett.
95
,
128102
(
2005
).
23.
A.
Nakano
and
A.
Ros
,
Electrophoresis
34
,
1085
(
2013
).
24.
E.-M.
Laux
,
X.
Knigge
,
F. F.
Bier
,
C.
Wenger
, and
R.
Hölzel
,
Electrophoresis
36
,
2094
(
2015
).
25.
D.
Kim
,
M.
Sonker
, and
A.
Ros
,
Anal. Chem.
91
,
277
(
2019
).
26.
M. A.
Hayes
,
Anal. Bioanal. Chem.
412
,
3801
(
2020
).
27.
B. H.
Lapizco-Encinas
,
Cur. Opinion Chem. Eng.
29
,
9
(
2020
).
28.
S.
Zavatski
,
H.
Bandarenka
, and
O. J. F.
Martin
,
Anal. Chem.
95
,
2958
(
2023
).
29.
R.
Pethig
,
Micromachines
13
,
261
(
2022
).
30.
D. V.
Matyushov
,
Biomicrofluidics
13
,
064106
(
2019
).
31.
S. S.
Seyedi
and
D. V.
Matyushov
,
J. Phys. Chem. B
122
,
9119
(
2018
).
32.
M.
Heyden
and
D. V.
Matyushov
,
J. Phys. Chem. B
124
,
11634
(
2020
).
33.
A.
Ramos
,
H.
Morgan
,
N. G.
Green
, and
A.
Castellanos
,
J. Phys. D: Appl. Phys.
31
,
2338
(
1999
).
34.
H.
Yang
and
G.
Qing
,
Chem. Phys. Rev.
2
,
021306
(
2021
).
35.
S. W.
Kowalczyk
,
A. Y.
Grosberg
,
Y.
Rabin
, and
C.
Dekker
,
Nanotechnology
22
,
315101
(
2011
).
36.
M.
Chinappi
,
M.
Yamaji
,
R.
Kawano
, and
F.
Cecconi
,
ACS Nano
14
,
15816
(
2020
).
37.
P.
García-Sánchez
,
J. E.
Flores-Mena
, and
A.
Ramos
,
Micromachines
10
,
100
(
2019
).
38.
H.
Fröhlich
,
Theory of Dielectrics
(
Oxford University Press
,
Oxford
,
1958
).
39.
C. J. F.
Böttcher
,
Theory of Electric Polarization, Vol. 1: Dielectrics in Static Fields
(
Elsevier
,
Amsterdam
,
1973
).
40.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Pergamon
,
Oxford
,
1984
).
41.
D. J.
Barlow
and
J. M.
Thornton
,
Biopolymers
25
,
1717
(
1986
).
42.
C.
Dekker
,
Nat. Nanotechnol.
2
,
209
(
2007
).
43.
M.
Muthukumar
,
Polymer Translocation
(
CRC Press
,
Boca Raton, FL
,
2011
).
44.
A.
Han
,
G.
Schürmann
,
G.
Mondin
,
R. A.
Bitterli
,
N. G.
Hegelbach
,
N. F.
Rooij
, and
U.
Staufer
,
Appl. Phys. Lett.
88
,
093901
(
2006
).
45.
Y.
Wu
and
J. J.
Gooding
,
Chem. Soc. Rev.
51
,
3862
(
2022
).
46.
A.
Barik
,
L. M.
Otto
,
D.
Yoo
,
J.
Jose
,
T. W.
Johnson
, and
S.-H.
Oh
,
Nano Lett.
14
,
2006
(
2014
).
47.
K. J.
Freedman
,
L. M.
Otto
,
A. P.
Ivanov
,
A.
Barik
,
S.-H.
Oh
, and
J. B.
Edel
,
Nat. Comm.
7
,
10217
(
2016
).
48.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw Hill Book Co.
,
Boston, MA
,
1953
), Vol. Part I.
49.
H. A.
Pohl
,
J. Appl. Phys.
22
,
869
(
1951
).
50.
E. H.
Grant
,
R. J.
Sheppard
, and
G. P.
South
,
Dielectric Behaviour of Biological Molecules in Solution
(
Clarendon Press
,
Oxford
,
1978
).
51.
S.
Takashima
,
Electrical Properties of Biopolymers and Membranes
(
Adam Hilger
,
Bristol
,
1989
).
52.
R.
Pethig
,
Ann. Rev. Phys. Chem.
43
,
177
(
1992
).
53.
J. L.
Oncley
,
Chem. Rev.
30
,
433
(
1942
).
54.
N.
Miura
,
N.
Asaka
,
N.
Shinyashiki
, and
S.
Mashimo
,
Biopolymers
34
,
357
(
1994
).
55.
M.
Wolf
,
R.
Gulich
,
P.
Lunkenheimer
, and
A.
Loidl
,
Biochim. Biophys. Acta
1824
,
723
(
2012
).
56.
G.
Loffler
,
H.
Schreiber
, and
O.
Steinhauser
,
J. Mol. Biol.
270
,
520
(
1997
).
57.
S.
Boresch
,
P.
Höchtl
, and
O.
Steinhauser
,
J. Phys. Chem. B
104
,
8743
(
2000
).
58.
A.
Knocks
and
H.
Weingärtner
,
J. Phys. Chem. B
105
,
3635
(
2001
).
59.
P.
Honegger
,
O.
Steinhauser
, and
C.
Schröder
,
J. Phys. Chem. Lett.
14
,
609
(
2023
).
60.
Y.
Hayashi
,
N.
Miura
,
J.
Isobe
,
N.
Shinyashiki
, and
S.
Yagihara
,
Biophys. J.
79
,
1023
(
2000
).
61.
C.
Cametti
,
S.
Marchetti
,
C. M. C.
Gambi
, and
G.
Onori
,
J. Phys. Chem. B
115
,
7144
(
2011
).
62.
C. J. F.
Böttcher
,
Theory of Electric Polarization. Dielectrics in Time-Dependent Fields
(
Elsevier
,
1973
), Vol. 2.
63.
M. S.
Till
and
G. M.
Ullmann
,
J. Mol. Mod.
16
,
419
(
2010
).
64.
S.
Takashima
and
K.
Asami
,
Biopolymers
33
,
59
(
1993
).
65.
S.
Takashima
,
Biophys. J.
64
,
1550
(
1993
).
66.
J.
Antosiewicz
,
Biophys. J.
69
,
1344
(
1995
).
67.
N. Q.
Vinh
,
M. S.
Sherwin
,
S. J.
Allen
,
D. K.
George
,
A. J.
Rahmani
, and
K. W.
Plaxco
,
J. Chem. Phys.
142
,
164502
(
2015
).
68.
D. R.
Martin
and
D. V.
Matyushov
,
J. Phys. Chem. Lett.
6
,
407
(
2015
).
69.
F.
Novelli
,
S.
Ostovar Pour
,
J.
Tollerud
,
A.
Roozbeh
,
D. R. T.
Appadoo
,
E. W.
Blanch
, and
J. A.
Davis
,
J. Phys. Chem. B
121
,
4810
(
2017
).
70.
D. R.
Martin
and
D. V.
Matyushov
,
J. Chem. Phys.
146
,
084502
(
2017
).
71.
S.
Takashima
,
J. Phys. Chem.
69
,
2281
(
1965
).
72.
A.
Gencoglu
,
F.
Camacho-Alanis
,
V. T.
Nguyen
,
A.
Nakano
,
A.
Ros
, and
A. R.
Minerick
,
Electrophoresis
32
,
2436
(
2011
).
73.
A.
Nakano
,
F.
Camacho-Alanis
,
T.-C.
Chao
, and
A.
Ros
,
Biomicrofluidics
6
,
034108
(
2012
).
74.
S.
Yadav
,
S. J.
Shire
, and
D. S.
Kalonia
,
Pharm. Res.
28
,
1973
(
2011
).
75.
F.
Camacho-Alanis
,
L.
Gan
, and
A.
Ros
,
Sens. Actuators B
173
,
668
(
2012
).

Supplementary Material

You do not currently have access to this content.