A wide-angle, dual-polarized frequency selective rasorber (FSR) with two absorption bands located at both sides of a passband is proposed. The structure comprises a lossy frequency selective surface (FSS), a bandpass FSS, and an air spacer located in between. A modified electric field coupled (ELC) resonator is used as a parallel resonance at the lossy layer to achieve a passband within the absorption band. The characteristic mode theory is utilized to investigate the absorption behavior of the lossy layer. Extensive simulations were carried out to assess the performance of the presented structure. Under the normal incidence, the proposed structure provides an operating bandwidth (|S11| < −10 dB) from 1.94 to 7.16 GHz, corresponding to a fractional bandwidth (FBW) of 114.7%. The achieved passband is around 4.3 GHz with a minimum insertion loss of 0.81 dB. The absorption bands with an absorption rate higher than 80% are 1.81–3.69 GHz (FBW of 68.4%) in the lower band and 4.95–7.43 GHz (FBW of 40%) in the upper band, respectively. It exhibits quite stable characteristics up to 50° angle of incidence. Furthermore, a prototype was fabricated and measured, which confirms that a good agreement exists between the experimental and simulation results. The proposed FSR is a suitable candidate for lowering the radar cross section (RCS) of the communication equipment or making them stealthy.

1.
S.
Fang
,
L.
Deng
,
P.
Zhang
,
L.
Qiu
,
H.
Xie
,
S.
Huang
,
J.
Du
, and
Z.
Wang
, “
Dual-function flexible metasurface for absorption and polarization conversion and its application for radar cross section reduction
,”
J. Appl. Phys.
131
,
135106
(
2022
).
2.
X. H.
Wang
,
L.
Huang
,
J. J.
Li
,
Y. C. H.
Du
,
Q.
Wang
,
X. D.
He
, and
Y.
Yuan
, “
Preparation of cobalt sulfide nanoparticles wrapped into reduced graphene oxide with tunable microwave absorption performance
,”
J. Appl. Phys.
127
,
205102
(
2020
).
3.
C.
Ji
,
C.
Huang
,
X.
Zhang
,
J.
Yang
,
J.
Song
, and
X.
Luo
, “
Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms
,”
Opt. Express
27
,
23368
23377
(
2019
).
4.
J.
Sui
,
D.
Zhang
, and
H.
Zhang
, “
Logical OR operation and magnetic field sensing based on layered topology
,”
J. Phys. D: Appl. Phys.
55
,
415001
(
2022
).
5.
J. Y.
Sui
,
S.-y.
Liao
,
B. X.
Li
, and
H. F.
Zhang
, “
High sensitivity multitasking non-reciprocity sensor using the photonic spin Hall effect
,”
Opt. Lett.
47
(
23
),
6065
6068
(
2022
).
6.
S.
Guo
,
C.
Hu
, and
H.
Zhang
, “
Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence
,”
JOSA B
37
(
9
),
2678
2687
(
2020
).
7.
B.
Zhang
,
L.
Li
,
C.
Jin
,
Q.
Lv
, and
R.
Mittra
, “
Wideband lowRCS antenna based on hybrid absorptive-diffusive frequency selective reflector
,”
IEEE Access
9
,
77863
77872
(
2021
).
8.
A.
Chatterjee
and
S. K.
Parui
, “
Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface
,”
IEEE Trans. Antennas Propag.
65
,
2233
2239
(
2017
).
9.
S. C.
Bakshi
,
D.
Mitra
, and
F. L.
Teixeira
, “
Wide-angle broadband rasorber for switchable and conformal application
,”
IEEE Trans. Microw. Theory Techn.
69
,
1205
1216
(
2021
).
10.
Q.
Yu
,
S.
Liu
,
A.
Monorchio
,
X.
Kong
,
Y.
Wen
, and
Z.
Huang
, “
A miniaturized high-selectivity frequency selective rasorber based on subwavelength resonance and interdigital resonator
,”
IEEE Antennas Wirel. Propag. Lett.
18
,
1833
1837
(
2019
).
11.
H.
Ye
,
J.
Wei
,
L.
Lin
,
F.
Liu
,
L.
Miao
,
S.
Bie
, and
J.
Jiang
, “
A frequency-selective surface rasorber based on four functional layers
,”
IEEE Trans. Antennas Propag.
69
,
2768
2778
(
2021
)..
12.
H.
Ye
,
W.
Dai
,
X.
Chen
,
H.
Zhang
,
S.
Bie
, and
J.
Jiang
, “
High-selectivity frequency-selective rasorber based on low-profile bandpass filter
,”
IEEE Antennas Wirel. Propag. Lett.
20
,
150
154
(
2021
).
13.
Q.
Chen
,
D.
Sang
,
M.
Guo
, and
Y.
Fu
, “
Frequency-selective rasorber with interabsorption band transparent window and interdigital resonator
,”
IEEE Trans. Antennas Propag.
66
,
4105
4114
(
2018
).
14.
J.
Chen
,
K.
Zhang
,
Y. T.
Zhao
,
Y.
Wei
,
Y.
Zhang
, and
J.
Ding
, “
Realization of optically transparent and broadband frequency selective rasorber using thin copper wire
,”
J. Appl. Phys.
131
,
075103
(
2022
).
15.
S.
Yu
,
N.
Kou
,
Z.
Ding
, and
Z.
Zhang
, “
Harmonic-suppressed frequency selective rasorber using resistive-film sheet and square-loops resonator
,”
IEEE Antennas Wirel. Propag. Lett.
19
,
292
296
(
2020
).
16.
K.
Zhang
,
W.
Jiang
, and
S.
Gong
, “
Design bandpass frequency selective surface absorber using LC resonators
,”
IEEE Antennas Wirel. Propag. Lett.
16
,
2586
2589
(
2017
).
17.
A.
Parameswaran
,
D.
Kundu
, and
H. S.
Sonalikar
, “
A dual-polarized wideband frequency-selective rasorber with low in-band insertion loss and high oblique incidence stability
,”
IEEE Trans. Electromagn. Compat.
63
,
1820
1828
(
2021
).
18.
M. M.
Zargar
,
A.
Rajput
,
K.
Saurav
, and
S. K.
Koul
, “
Frequency-selective rasorber based on high-Q Minkowski fractal-shaped resonator for realizing a low radar cross-section radiating system
,”
IEEE Trans. Electromagn. Compat.
64
,
1574
1584
(
2022
).
19.
Z.
Shen
,
J.
Wang
, and
B.
Li
, “
3-D frequency selective rasorber: Concept, analysis, and design
,”
IEEE Trans. Microw. Theory Techn.
64
,
3087
3096
(
2016
).
20.
B.
Chen
,
B.
Wu
,
Y. T.
Zhao
,
T.
Su
, and
Y. F.
Fan
, “
Via-based miniaturized rasorber using graphene films
,”
J. Appl. Phys.
131
,
214504
(
2022
).
21.
X.
Xiu
,
W.
Che
,
W.
Yang
,
Y.
Han
, and
Q.
Xue
, “
Double-polarized dual-passband absorptive frequency-selective transmission structure
,”
IEEE Trans. Electromagn. Compat.
62
,
1951
1960
(
2020
).
22.
M.
Guo
,
D.
Sang
,
F.
Yuan
,
T.
Guo
,
Y.
Zheng
,
Q.
Chen
, and
Y.
Fu
, “
Broadband absorptive frequency-selective rasorber based on multilayer resistive sheets using multilayer resonator
,”
IEEE Trans. Antennas Propag.
70
,
2009
2022
(
2022
)..
23.
Q.
Yu
,
S.
Liu
,
A.
Monorchio
,
X.
Kong
,
D.
Brizi
,
C.
Wu
, and
Y.
Wen
, “
A highly selective rasorber with ultraminiaturized unit based on interdigitated 2.5-D parallel resonator
,”
IEEE Trans. Electromagn. Compat.
64
,
1585
1592
(
2022
)..
24.
H.
Huang
and
Z.
Shen
, “
Absorptive frequency-selective transmission structure with square-loop hybrid resonator
,”
IEEE Antennas Wirel. Propag. Lett.
16
,
3212
3215
(
2017
).
25.
Y.
Han
,
L.
Zhu
,
Y.
Chang
, and
B.
Li
, “
Dual-polarized bandpass and band-notched frequency-selective absorbers under multimode resonance
,”
IEEE Trans. Antennas Propag.
66
,
7449
7454
(
2018
).
26.
M.
Qu
,
S.
Sun
,
L.
Deng
, and
S.
Li
, “
Design of a frequency-selective rasorber based on notch structure
,”
IEEE Access
7
,
3704
3711
(
2019
).
27.
X.
Xiu
,
W.
Che
,
Y.
Han
, and
W.
Yang
, “
Low-profile dual-polarization frequency selective rasorbers based on simple-structure lossy cross-frame elements
,”
IEEE Antennas Wirel. Propag. Lett.
17
,
1002
1005
(
2018
).
28.
H.
Odabasi
,
F. L.
Teixeira
, and
D. O.
Guney
, “
Electrically small, complementary electric-field-coupled resonator antennas
,”
J. Appl. Phys.
113
,
084903
(
2013
).
29.
H.
Odabasi
and
F. L.
Teixeira
, “
Electric-field coupled resonators as metamaterial loadings for waveguide miniaturization
,”
J. Appl. Phys.
114
,
214901
(
2013
).
30.
K.
Li
,
C.
Zhu
,
L.
Li
,
Y.-M.
Cai
, and
C.-H.
Liang
, “
Design of electrically small metamaterial antenna with ELC and EBG loading
,”
IEEE Antennas Wirel. Propag. Lett.
12
,
678
681
(
2013
).
31.
D.
Schurig
,
J. J.
Mock
, and
D. R.
Smith
, “
Electric-field-coupled resonators for negative permittivity metamaterials
,”
Appl. Phys. Lett.
88
,
041109
(
2006
).
32.
J.
Xiong
,
B.
Yang
,
Y.
Wu
,
X.
Zeng
,
Q.
Li
,
R.
Tang
, and
H.
Lin
, “
Broadband-transmissive, frequency-selective rasorber design using characteristic mode analysis
,”
Electronics
11
,
1418
(
2022
).
33.
D.
Zha
,
J.
Dong
,
K.
Si
,
Z.
Cao
,
R.
Li
,
F.
He
,
M.
Miao
,
S.
Bie
, and
J.
Jiang
, “
Characteristic mode analysis of resistor-loaded frequency selective surfaces: Theoretical research and experimental verification
,”
J. Appl. Phys.
130
,
053101
(
2021
).
34.
L.
Guan
,
Z.
He
,
D.
Ding
, and
R.
Chen
, “
Efficient characteristic mode analysis for radiation problems of antenna arrays
,”
IEEE Trans. Antennas Propagat.
67
,
199
206
(
2019
).
35.
J.
Dong
,
R.
Wu
, and
Y.
Pan
, “
A low-profile broadband metasurface antenna with polarization conversion based on characteristic mode analysis
,”
Front. Phys.
10
,
860606
(
2022
).
36.
L.
Zhang
,
Y.
Sun
,
Y.
He
,
S.-W.
Wong
,
C.
Mao
,
L.
Ge
, and
S.
Gao
, “
A quad-polarization reconfigurable antenna with suppressed cross polarization based on characteristic mode theory
,”
IEEE Trans. Antennas Propag.
69
,
636
647
(
2021
).
37.
Y.
Wu
,
H.
Lin
,
J.
Xiong
,
J.
Hou
,
R.
Zhou
,
F.
Deng
, and
R.
Tang
, “
A broadband metamaterial absorber design using characteristic modes analysis
,”
J. Appl. Phys.
129
,
134902
(
2021
)..
38.
Q.
Guo
,
J.
Su
,
Z.
Li
,
J.
Song
, and
Y.
Guan
, “
Miniaturized-element frequency-selective rasorber design using characteristic modes analysis
,”
IEEE Trans. Antennas Propag.
68
,
6683
6694
(
2020
).
39.
W.
Li
,
L.
Zhang
,
J.
Zhu
,
Z.
Tao
, and
Q. H.
Liu
, “
Constructing dual-frequency OAM circular patch antenna using characteristic mode theory
,”
J. Appl. Phys.
126
,
064501
(
2019
).
40.
F.
Costa
,
A.
Monorchio
, and
G.
Manara
, “
Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model
,”
IEEE Antennas Propag. Mag.
54
,
35
48
(
2012
).
41.
E.
Arnieri
,
F.
Greco
, and
G.
Amendola
, “
A broadband, wide-angle scanning, linear-to-circular polarization converter based on standard Jerusalem cross frequency selective surfaces
,”
IEEE Trans. Antennas Propagat.
69
,
578
583
(
2021
).
42.
S. S.
Zhu
,
P.
Wang
,
Y.
Zhang
,
Z. M.
Yan
,
Y.
Wang
, and
H. C.
Zhou
, “
A reconfigurable polarization converter and related application as horn antenna cladding
,”
J. Appl. Phys.
133
,
023102
(
2023
).
43.
S.
Liao
,
J.
Sui
, and
H.
Zhang
, “
Switchable ultra-broadband absorption and polarization conversion metastructure controlled by light
,”
Opt. Express
30
,
34172
34187
(
2022
).
44.
Q.
Zhou
,
X.
Yin
,
F.
Ye
,
R.
Mo
,
Z.
Tang
,
X.
Fan
,
L.
Cheng
, and
L.
Zhang
, “
Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure
,”
Appl. Phys. A
125
,
131
(
2019
)..
45.
G.
Deng
,
K.
Lv
,
H.
Sun
,
Y.
Hong
, and
J.
Yang
, “
Wideband absorber based on conductive ink frequency selective surface with polarization insensitivity and wide-incident-angle stability
,”
Nanomater. Nanotechnol.
10
,
1847980420935718
(
2020
).
46.
M.
Guo
,
Z.
Sun
,
D.
Sang
,
X.
Jia
, and
Y.
Fu
, “
Design of frequency-selective rasorbers based on centrosymmetric bended-strip resonator
,”
IEEE Access
7
,
24964
24970
(
2019
).
47.
B.
Thakur
and
A.
Kunte
, “
Improved design of CELC meta-resonators for bandwidth improvement and miniaturization of patch antenna
,”
Appl. Phys. A
124
,
860
(
2018
).
48.
I. J.
Bahl
,
Lumped Element for RF and Microwave Circuits
(
Artech House
,
2003
).
49.
S.
Sheikh
, “
Miniaturized-element frequency-selective surfaces based on the transparent element to a specific polarization
,”
IEEE Antennas Wirel. Propag. Lett.
15
,
1661
1664
(
2016
).
50.
Y.
Ding
,
M.
Li
,
J.
Su
,
Q.
Guo
,
H.
Yin
,
Z.
Li
, and
J.
Song
, “
Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch
,”
IEEE Trans. Antennas Propagat.
69
(
3
),
1493
1504
(
2021
).
51.
D. S.
Wang
,
P.
Zhao
, and
C. H.
Chan
, “
Design and analysis of a high-selectivity frequency-selective surface at 60 GHz
,”
IEEE Trans. Microw. Theory Techn.
64
,
1694
1703
(
2016
).
You do not currently have access to this content.