In this study, we developed a shallow defect layer formation process using moderate-pressure H2 plasma at 3.3 kPa for an extrinsic gettering layer of ultra-thin Si chips aimed at three-dimensional integrated circuits. This process can be conducted in the presence of trivial amounts of air impurities (∼0.01 vol. %), thereby avoiding the use of high-vacuum equipment. We investigated the dependence of defect formation behavior on various processing parameters such as H2 flow rate, processing time, substrate temperature, and input power. It was determined that the absence of H2 gas flow was favorable for the defect layer formation because Si etching by hydrogen atoms was suppressed. A low Si temperature and high input power are desirable for a high defect density in the shallow surface region of the extrinsic gettering layer. When pulse-modulated plasma irradiation was attempted, the defect layer that formed became thinner and had a higher defect density than that obtained by continuous plasma, demonstrating good Cu gettering performance. Without using harmless chemicals, or high-cost equipment, a shallow gettering layer can be formed using inexpensive H2 gas.

1.
M.
Koyanagi
, “
Recent progress in 3D integration technology
,”
IEICE Electron. Express
12
(
7
),
20152001
(
2015
).
2.
T.
Matsumoto
,
M.
Satoh
,
K.
Sakuma
,
H.
Kurino
,
N.
Miyakawa
,
H.
Itani
, and
M.
Koyanagi
, “
New three-dimensional wafer bonding technology using the adhesive injection method
,”
Jpn. J. Appl. Phys.
37
(
3S
),
1217
(
1998
).
3.
M.
Koyanagi
,
H.
Kurino
,
K. W.
Lee
,
K.
Sakuma
,
N.
Miyakawa
, and
H.
Itani
, “
Future system-on-silicon LSI chips
,”
IEEE Micro
18
(
4
),
17
22
(
1998
).
4.
K.
Hiramoto
,
M.
Sano
,
S.
Sadamitsu
, and
N.
Fujino
, “
Degradation of gate oxide integrity by metal impurities
,”
Jpn. J. Appl. Phys.
28
(
12A
),
L2109
(
1989
).
5.
W. K.
Tice
and
T. Y.
Tan
, “
Nucleation of CuSi precipitate colonies in oxygen-rich silicon
,”
Appl. Phys. Lett.
28
(
9
),
564
565
(
1976
).
6.
K. G.
Barraclough
, “
Oxygen in czochralski silicon for ULSI
,”
J. Cryst. Growth
99
(
1–4
),
654
664
(
1990
).
7.
K.
Hoshikawa
,
H.
Kohda
,
H.
Hirata
, and
H.
Nakanishi
, “
Low oxygen content Czochralski silicon crystal growth
,”
Jpn. J. Appl. Phys.
19
(
1
),
L33
L36
(
1980
).
8.
W. J.
Patrick
,
S. M.
Hu
, and
W. A.
Westdorp
, “
The effect of SiO2 precipitation in Si on generation currents in MOS capacitors
,”
J. Appl. Phys.
50
(
3
),
1399
1402
(
1979
).
9.
Y.
Mizushima
,
Y.
Kim
,
T.
Nakamura
,
A.
Uedono
, and
T.
Ohba
, “
Behavior of copper contamination on backside damage for ultra-thin silicon three dimensional stacking structure
,”
Microelectron. Eng.
167
,
23
31
(
2017
).
10.
M.
Hayes
,
B.
Martel
,
G. W.
Alam
,
H.
Lignier
,
S.
Dubois
,
E.
Pihan
, and
O.
Palais
, “
Impurity gettering by boron- and phosphorus-doped polysilicon passivating contacts for high-efficiency multicrystalline silicon solar cells
,”
Phys. Status Solidi A
216
(
17
),
1900321
(
2019
).
11.
H.
Talvitie
,
V.
Vähänissi
,
A.
Haarahiltunen
,
M.
Yli-Koski
, and
H.
Savin
, “
Phosphorus and boron diffusion gettering of iron in monocrystalline silicon
,”
J. Appl. Phys.
109
(
9
),
093505
(
2011
).
12.
S. M.
Myers
,
M.
Seibt
, and
W.
Schröter
, “
Mechanisms of transition-metal gettering in silicon
,”
J. Appl. Phys.
88
(
7
),
3795
3819
(
2000
).
13.
H.
Ohmi
,
K.
Kimoto
,
T.
Nomura
,
H.
Kakiuchi
, and
K.
Yasutake
, “
Study on silicon removal property and surface smoothing phenomenon by moderate-pressure microwave hydrogen plasma
,”
Mater. Sci. Semicond. Process.
129
,
105780
(
2021
).
14.
H.
Nordmark
,
A. G.
Ulyashin
,
J. C.
Walmsley
, and
R.
Holmestad
, “
H-initiated extended defects from plasma treatment: Comparison between c-Si and mc-Si
,”
J. Phys.: Conf. Ser.
281
(
1
),
012029
(
2011
).
15.
A. G.
Ulyashin
,
R.
Job
,
W. R.
Fahrner
,
D.
Grambole
, and
F.
Herrmann
, “
Hydrogen redistribution and void formation in hydrogen plasma treated Czochralski silicon
,”
Solid State Phenom.
82–84
,
315
322
(
2002
).
16.
C.
Ghica
,
L. C.
Nistor
,
M.
Stefan
,
D.
Ghica
,
B.
Mironov
,
S.
Vizireanu
,
A.
Moldovan
, and
M.
Dinescu
, “
Specificity of defects induced in silicon by RF-plasma hydrogenation
,”
Appl. Phys. A
98
(
4
),
777
785
(
2010
).
17.
S. J.
Pearton
,
J. W.
Corbett
, and
T. S.
Shi
, “
Hydrogen in crystalline semiconductors
,”
Appl. Phys. A
43
(
3
),
153
195
(
1987
).
18.
T.
Nomura
,
K.
Kimoto
,
H.
Kakiuchi
,
K.
Yasutake
, and
H.
Ohmi
, “
Si nanocone structure fabricated by a relatively high-pressure hydrogen plasma in the range of 3.3–27 kPa
,”
J. Vac. Sci. Technol. B
40
(
3
),
032801
(
2022
).
19.
T.
Ohba
,
K.
Sakui
,
S.
Sugatani
,
H.
Ryoson
, and
N.
Chujo
, “
Review of bumpless build cube (BBCube) using wafer-on-wafer (WOW) and chip-on-wafer (COW) for tera-scale three-dimensional integration (3DI)
,”
Electronics
11
(
2
),
236
(
2022
).
20.
Y. J.
Chabal
,
M. K.
Weldon
,
Y.
Caudano
,
B. B.
Stefanov
, and
K.
Raghavachari
, “
Spectroscopic studies of H-decorated interstitials and vacancies in thin-film silicon exfoliation
,”
Physica B
273–274
,
152
163
(
1999
).
21.
Y.
Ma
,
Y. L.
Huang
,
W.
Düngen
,
R.
Job
, and
W. R.
Fahrner
, “
Hydride formation on the platelet inner surface of plasma-hydrogenated crystalline silicon investigated with Raman spectroscopy
,”
Phys. Rev. B
72
(
8
),
085321
(
2005
).
22.
K.
Ishioka
,
N.
Umehara
,
S.
Fukuda
,
T.
Mori
,
S.
Hishita
,
I.
Sakaguchi
,
H.
Haneda
,
M.
Kitajima
, and
K.
Murakami
, “
Formation mechanism of interstitial hydrogen molecules in crystalline silicon
,”
Jpn. J. Appl. Phys.
42
(
9R
),
5410
5414
(
2003
).
23.
W.
Holzer
,
Y. L.
Duff
, and
K.
Altmann
, “
J dependence of the depolarization ratio of the rotational components of the Q branch of the H2 and D2 Raman band
,”
J. Chem. Phys.
58
(
2
),
642
643
(
1973
).
24.
B. P.
Stoicheff
, “
High resolution Raman spectroscopy of gases: Ix.: Spectra of h2, hd, and d2
,”
Can. J. Phys.
35
(
6
),
730
741
(
1957
).
25.
K.
Murakami
,
N.
Fukata
,
S.
Sasaki
,
K.
Ishioka
,
M.
Kitajima
,
S.
Fujimura
,
J.
Kikuchi
, and
H.
Haneda
, “
Hydrogen molecules in crystalline silicon treated with atomic hydrogen
,”
Phys. Rev. Lett.
77
(
15
),
3161
3164
(
1996
).
26.
S. S.
Bhatnagar
,
E. J.
Allin
, and
H. L.
Welsh
, “
The Raman spectra of liquid and solid h2, d2, and hd at high resolution
,”
Can. J. Phys.
40
(
1
),
9
23
(
1962
).
27.
E. R.
Weber
, “
Transition metals in silicon
,”
Appl. Phys. A Solids Surf.
30
(
1
),
1
22
(
1983
).
28.
S.
Veprek
,
C.
Wang
, and
M. G. J.
Veprek-Heijman
, “
Role of oxygen impurities in etching of silicon by atomic hydrogen
,”
J. Vac. Sci. Technol. A
26
(
3
),
313
320
(
2008
).
29.
T.
Yamada
,
H.
Ohmi
,
K.
Okamoto
,
H.
Kakiuchi
, and
K.
Yasutake
, “
Effects of surface temperature on high-rate etching of silicon by narrow-gap microwave hydrogen plasma
,”
Jpn. J. Appl. Phys.
51
,
10NA09
(
2012
).
30.
Y.
Ma
,
R.
Job
,
Y. L.
Huang
,
W. R.
Fahrner
,
M. F.
Beaufort
, and
J. F.
Barbot
, “
Three-layer structure of hydrogenated czochralski silicon
,”
J. Electrochem. Soc.
151
(
9
),
G627
(
2004
).
31.
P.
Stallinga
,
P.
Johannesen
,
S.
Herstrøm
,
K.
Bonde Nielsen
,
B.
Bech Nielsen
, and
J. R.
Byberg
, “
Electron paramagnetic resonance study of hydrogen-vacancy defects in crystalline silicon
,”
Phys. Rev. B
58
(
7
),
3842
3852
(
1998
).
32.
E. V.
Lavrov
,
J.
Weber
,
L.
Huang
, and
B. B.
Nielsen
, “
Vacancy-hydrogen defects in silicon studied by Raman spectroscopy
,”
Phys. Rev. B
64
(
3
),
035204
(
2001
).
33.
F. A.
Reboredo
,
M.
Ferconi
, and
S. T.
Pantelides
, “
Theory of the nucleation, growth, and structure of hydrogen-induced extended defects in silicon
,”
Phys. Rev. Lett.
82
(
24
),
4870
4873
(
1999
).
34.
D. Bräunig and F. Wulf, “Radiation effects in electronic components,” in Instabilities in Silicon Devices, edited by G. Barbottin and A. Vapaille (Elsevier, 1999), Vol. 3, Chap. 10, pp. 659–660
.
35.
C.-K.
Chen
,
T.-C.
Wei
,
L. R.
Collins
, and
J.
Phillips
, “
Modelling the discharge region of a microwave generated hydrogen plasma
,”
J. Phys. D: Appl. Phys.
32
(
6
),
688
698
(
1999
).
36.
K.
Hassouni
,
A.
Gicquel
,
M.
Capitelli
, and
J.
Loureiro
, “
Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond MPACVD processes
,”
Plasma Sources Sci. Technol.
8
(
3
),
494
512
(
1999
).
37.
T.
Yamada
,
H.
Ohmi
,
H.
Kakiuchi
, and
K.
Yasutake
, “
Hydrogen atom density in narrow-gap microwave hydrogen plasma determined by calorimetry
,”
J. Appl. Phys.
119
(
6
),
063301
(
2016
).
38.
S. B.
Zhang
and
W. B.
Jackson
, “
Formation of extended hydrogen complexes in silicon
,”
Phys. Rev. B
43
(
14
),
12142
12145
(
1991
).
39.
Y.-S.
Kim
and
K. J.
Chang
, “
Structural transformation in the formation of H-induced (111) platelets in Si
,”
Phys. Rev. Lett.
86
(
9
),
1773
1776
(
2001
).
40.
A. W. R.
Leitch
,
V.
Alex
, and
J.
Weber
, “
Raman spectroscopy of hydrogen molecules in crystalline silicon
,”
Phys. Rev. Lett.
81
(
2
),
421
424
(
1998
).
41.
J. N.
Heyman
,
J. W.
Ager
III
,
E. E.
Haller
,
N. M.
Johnson
,
J.
Walker
, and
C. M.
Doland
, “
Hydrogen-induced platelets in silicon: Infrared absorption and Raman scattering
,”
Phys. Rev. B
45
(
23
),
13363
13366
(
1992
).
42.
S. M.
Gates
,
C. M.
Greenlief
,
S. K.
Kulkarni
, and
H. H.
Sawin
, “
Surface reactions in Si chemical vapor deposition from silane
,”
J. Vac. Sci. Technol. A
8
(
3
),
2965
2969
(
1990
).
43.
Y.
Narita
,
Y.
Kihara
,
S.
Inanaga
, and
A.
Namiki
, “
Substantially low desorption barriers in recombinative desorption of deuterium from a Si(100) surface
,”
Surf. Sci.
603
(
9
),
1168
1174
(
2009
).
44.
T.
Zundel
and
J.
Weber
, “
Trap-limited hydrogen diffusion in boron-doped silicon
,”
Phys. Rev. B
46
(
4
),
2071
2077
(
1992
).
45.
N. E.
Grant
,
F. E.
Rougieux
,
D.
Macdonald
,
J.
Bullock
, and
Y.
Wan
, “
Grown-in defects limiting the bulk lifetime of p-type float-zone silicon wafers
,”
J. Appl. Phys.
117
(
5
),
055711
(
2015
).
46.
N. E.
Grant
,
V. P.
Markevich
,
J.
Mullins
,
A. R.
Peaker
,
F.
Rougieux
, and
D.
Macdonald
, “
Thermal activation and deactivation of grown-in defects limiting the lifetime of float-zone silicon
,”
Phys. Status Solidi Rapid Res. Lett.
10
(
6
),
443
447
(
2016
).
You do not currently have access to this content.