The diffusion behavior of Mg in Mg/N co-implanted GaN is investigated in response to a set of annealing conditions and methodologies, namely, 1000 °C/30 min thermal anneal, by high-temperature pulsed gyrotron microwave annealing at 1420 or 1500 °C, or by thermal and microwave annealing, sequentially. After 1000 °C annealing, the diffusion of Mg in GaN is found to be negligible, as measured by secondary ion mass spectrometry. Annealing by gyrotron microwave annealing alone induces the diffusion of Mg at a rate on the order of 10−12 cm2/s. However, the use of a thermal anneal before microwave gyrotron annealing reduces this rate by an order of magnitude to 10−13 cm2/s. We find that a model that considers Mg diffusion from an inhomogeneous medium that contains a defect-rich implanted region near-surface to a relatively pristine region below the implant range better explains the observed diffusion behavior than a conventional model that assumes a homogeneous medium. By analyzing the diffusion behavior using the Boltzmann–Matano method, we present a discussion of reduction in [VGa] by thermal annealing at 1000 °C, leading to a suppressed diffusion coefficient during subsequent high-temperature annealing relative to diffusion after 1420/1500 °C annealing alone. This effect holds potential for improvement in the precision of selectively doped regions for future applications based on the (Al)GaN material system. An improved field profile control in real devices can increase the breakdown and current-handling capabilities in power electronic applications.

1.
M.
Xiao
,
R.
Zhang
,
D.
Dong
,
H.
Wang
, and
Y.
Zhang
, “
Design and simulation of GaN superjunction transistors with 2-DEG channels and fin channels
,”
IEEE J. Emerg. Sel. Top. Power Electron.
7
(
3
),
1475
(
2019
).
2.
G.
Feng
,
J.
Suda
, and
T.
Kimoto
, “
Space-modulated junction termination extension for ultrahigh-voltage pin diodes in 4H-SiC
,”
IEEE Trans. Electron Devices
59
(
2
),
414
(
2012
).
3.
I.
Mahaboob
,
M.
Yakimov
,
E.
Rocco
,
K.
Hogan
, and
F.
Shahedipour-Sandvik
, “
Drain-voltage-induced secondary effects in AlGaN/GaN HEMTs with integrated body-diode
,”
IEEE Trans. Electron Devices
67
(
10
), 3983–3987 (
2020
).
4.
K.
Hogan
,
M.
Rodriguez
,
E.
Rocco
,
V.
Meyers
,
B.
McEwen
, and
F. S.
Shahedipour-Sandvik
, “
In operando investigation of GaN PIN device characteristics under electron irradiation energies comparable to Pm-147 source for betavoltaic application
,”
AIP Adv.
10
(
8
), 085110 (
2020
).
5.
R.
Zheng
,
J.
Lu
,
Y.
Liu
,
X.
Li
,
X.
Xu
,
R.
He
,
Z.
Tao
, and
Y.
Gao
, “
Comparative study of GaN betavoltaic battery based on pn junction and Schottky barrier diode
,”
Radiat. Phys. Chem.
168
,
108595
(
2020
).
6.
E.
Rocco
,
I.
Mahaboob
,
K.
Hogan
,
V.
Meyers
,
B.
McEwen
,
L. D.
Bell
, and
F.
Shahedipour-Sandvik
, “
Impurity incorporation and diffusion from regrowth interfaces in N-polar GaN photocathodes and the impact on quantum efficiency
,”
J. Appl. Phys.
129
(
19
), 195701 (
2021
).
7.
J. J.
Wierer
,
J. R.
Dickerson
,
A. A.
Allerman
,
A. M.
Armstrong
,
M. H.
Crawford
, and
R. J.
Kaplar
, “
Simulations of junction termination extensions in vertical GaN power diodes
,”
IEEE Trans. Electron Devices
64
(
5
), 2291–2297 (
2017
).
8.
T. J.
Anderson
,
J. D.
Greenlee
,
B. N.
Feigelson
,
J. K.
Hite
,
F. J.
Kub
, and
K. D.
Hobart
, “
Improved vertical GaN Schottky diodes with ion implanted junction termination extension
,”
ECS J. Solid State Sci. Technol.
5
(
6
), Q176 (
2016
).
9.
T.
Niwa
,
T.
Fujii
, and
T.
Oka
, “
High carrier activation of Mg ion-implanted GaN by conventional rapid thermal annealing
,”
Appl. Phys. Express
10
(
9
), 091002 (
2017
).
10.
J. D.
Greenlee
,
B. N.
Feigelson
,
T. J.
Anderson
,
M. J.
Tadjer
,
J. K.
Hite
,
M. A.
Mastro
,
K. D. H. C. R.
Eddy
, and
F. J.
Kub
, “
Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties
,”
J. Appl. Phys.
116
(
6
), 063502 (
2014
).
11.
V.
Meyers
,
E.
Rocco
,
T. J.
Anderson
,
J. C.
Gallagher
,
M. A.
Ebrish
,
K.
Jones
,
M.
Derenge
,
M.
Shevelev
,
V.
Sklyar
,
K.
Hogan
,
B.
McEwen
, and
F.
Shahedipour-Sandvik
, “
p-type conductivity and damage recovery in implanted GaN annealed by rapid gyrotron microwave annealing
,”
J. Appl. Phys.
128
(
8
), 085701 (
2020
).
12.
K.
Sumida
,
K.
Hirukawa
,
H.
Sakurai
,
K.
Sierakowski
,
M.
Horita
,
M.
Bockowski
,
T.
Kachi
, and
J.
Suda
, “
Effect of annealing time and pressure on electrical activation and surface morphology of Mg-implanted GaN annealed at 1300 °C in ultra-high-pressure nitrogen ambient
,”
Appl. Phys. Express
14
(
12
), 121004 (
2021
).
13.
Z.
Benzarti
,
I.
Halidou
,
Z.
Bougrioua
,
T.
Boufaden
, and
B.
El Jani
, “
Magnesium diffusion profile in GaN grown by MOVPE
,”
J. Cryst. Growth
310
(
14
), 3274–3277 (
2008
).
14.
H.
Sakurai
,
T.
Narita
,
M.
Omori
,
S.
Yamada
,
A.
Koura
,
M.
Iwinska
,
K.
Kataoka
,
M.
Horita
,
N.
Ikarashi
,
M.
Bockowski
, and
J.
Suda
, “
Redistribution of Mg and H atoms in Mg-implanted GaN through ultra-high-pressure annealing
,”
Appl. Phys. Express
13
(
8
), 086501 (
2020
).
15.
T.
Narita
,
H.
Sakurai
,
M.
Bockowski
,
K.
Kataoka
,
J.
Suda
, and
T.
Kachi
, “
Electric-field-induced simultaneous diffusion of Mg and H in Mg-doped GaN prepared using ultra-high-pressure annealing
,”
Appl. Phys. Express
12
(
11
), 111005 (
2019
).
16.
T.
Narita
,
A.
Uedono
, and
T.
Kachi
, “
Effects of hydrogen incorporation on Mg diffusion in GaN-doped with Mg ions via ultra-high-pressure annealing
,”
Phys. Status Solidi
259
(
11
), 2200235 (
2022
).
17.
D.
Lee
,
B.
Mitchell
,
Y.
Fujiwara
, and
V.
Dierolf
, “
Thermodynamics and kinetics of three Mg−H−V N complexes in Mg:GaN from combined first-principles calculation and experiment
,”
Phys. Rev. Lett
112
(
20
), 205501 (
2014
).
18.
K.
Harafuji
and
K.
Kawamura
, “
Magnesium diffusion at dislocation in wurtzite-type GaN crystal
,”
Jpn. J. Appl. Phys.
44
(
9R
), 6495 (
2005
).
19.
C.
Ronning
,
E. P.
Carlson
,
D. B.
Thomson
, and
R. F.
Davis
, “
Optical activation of Be implanted into GaN
,”
Appl. Phys. Lett.
73
(
12
), 1622–1624 (
1998
).
20.
K. T.
Liu
,
Y. K.
Su
,
S. J.
Chang
, and
Y.
Horikoshi
, “
Magnesium/nitrogen and beryllium/nitrogen coimplantation into GaN
,”
J. Appl. Phys.
98
(
7
), 073702 (
2005
).
21.
R.
Jakiela
,
K.
Sierakowski
,
T.
Sochacki
,
M.
Iwinska
,
M.
Fijalkowski
,
A.
Barcz
, and
M.
Bockowski
, “
Investigation of diffusion mechanism of beryllium in GaN
,”
Phys. B
594
,
412316
(
2020
).
22.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Impact of group-II acceptors on the electrical and optical properties of GaN
,”
Jpn. J. Appl. Phys.
52
(
8S
), 08JJ04 (
2013
).
23.
U.
Wahl
,
L. M.
Amorim
,
V.
Augustyns
,
A.
Costa
,
E.
David-Bosne
,
T. A. L.
Lima
,
G.
Lippertz
,
J. G.
Correia
,
M. R.
da Silva
,
M.
Kappers
, K. Temst, A. Vantomme, and L. M. C. Pereira, “
Lattice location of Mg in GaN: A fresh look at doping limitations
,”
Phys. Rev. Lett.
118
(
9
), 095501 (
2017
).
24.
G.
Miceli
and
A.
Pasquarello
, “
Self-compensation due to point defects in Mg-doped GaN
,”
Phys. Rev. B
93
(
16
), 165207 (
2016
).
25.
K.
Iwata
,
H.
Sakurai
,
S.
Arai
,
T.
Nakashima
,
T.
Narita
,
K.
Kataoka
,
M.
Bockowski
,
M.
Nagao
,
J.
Suda
,
T.
Kachi
, and
N.
Ikarashi
, “
Defect evolution in Mg ions implanted GaN upon high temperature and ultrahigh N2 partial pressure annealing: Transmission electron microscopy analysis
,”
J. Appl. Phys.
127
(
10
), 105106 (
2020
).
26.
K.
Lorenz
,
E.
Wendler
,
A.
Redondo-Cubero
,
N.
Catarino
,
M.
Chauvat
,
S.
Schwaiger
,
F.
Scholz
,
E.
Alves
, and
P.
Ruterana
, “
Implantation damage formation in a-, c- and m-plane GaN
,”
Acta Mater.
123
,
177
(
2017
).
27.
S.
Limpijumnong
and
C.
Van de Walle
, “
Diffusivity of native defects in GaN
,”
Phys. Rev. B
69
(
3
), 035207 (
2004
).
28.
K.
Shima
,
R.
Tanaka
,
S.
Takashima
,
K.
Ueno
,
M.
Edo
,
K.
Kojima
,
A.
Uedono
,
S.
Ishibashi
, and
S. F.
Chichibu
, “
Improved minority carrier lifetime in p-type GaN segments prepared by vacancy-guided redistribution of Mg
,”
Appl. Phys. Lett.
119
(
18
), 182106 (
2021
).
29.
A.
Uedono
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
H.
Matsuyama
,
H.
Kudo
,
H.
Naramoto
, and
S.
Ishibashi
, “
Vacancy-type defects and their annealing behaviors in Mg-implanted GaN studied by a monoenergetic positron beam
,”
Phys. Stat. Sol. B
252
(
12
),
2794
(
2015
).
30.
Y.
Wang
,
K.
Huynh
,
M.
Liao
,
H.
Yu
,
T.
Bai
,
J.
Tweedie
,
M.
Breckenridge
,
R.
Collazo
,
Z.
Sitar
,
M.
Bockowski
, and
Y.
Liu
, “
Strain recovery and defect characterization in Mg-implanted homoepitaxial GaN on high-quality GaN substrates
,”
Phys. Status Solidi B
257
(
4
), 1900705 (
2020
).
31.
V.
Meyers
,
E.
Rocco
,
K.
Hogan
,
B.
McEwen
,
K.
Jones
,
M.
Derenge
,
M.
Shevelev
,
V.
Sklyar
, and
F.
Shahedipour-Sandvik
, “
P-type conductivity and suppression of green luminescence in Mg/N Co-implanted GaN by gyrotron microwave annealing
,”
J. Appl. Phys.
130
(
8
), 085704 (
2021
).
32.
C. E.
Hager
,
K. A.
Jones
,
M. A.
Derenge
, and
T. S.
Zheleva
, “
Activation of ion implanted Si in GaN using a dual AlN annealing cap
,”
J. Appl. Phys.
105
(
3
), 033713 (
2009
).
33.
R.
Czernecki
,
E.
Grzanka
,
R.
Jakiela
,
S.
Grzanka
,
C.
Skierbiszewski
,
H.
Turski
,
P.
Perlin
,
T.
Suski
,
K.
Donimirski
, and
M.
Leszczynski
, “
Hydrogen diffusion in GaN:Mg and GaN:Si
,”
J. Alloys Compd.
747
,
354
(
2018
).
34.
H.
Mehrer
,
Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes
(
Springer Science & Business Media
,
Berlin
,
2007
), Chap. 10.1.
35.
C.
Matano
, “
On the relation between the diffusion-coefficients and concentrations of solid metals
,”
Jpn. J. Phys.
8
, 109–113 (
1933
).
36.
H. Y.
Xiao
,
F.
Gao
,
X. T.
Zu
, and
W. J.
Weber
, “
Threshold displacement energy in GaN: Ab initio molecular dynamics study
,”
J. Appl. Phys
105
(
12
), 123527 (
2009
).
37.
J. F.
Ziegler
and
M.
Ziegler
,
Computer Code Stopping Range of Ions in Matter
(Nuclear Instruments and Methods in Physics Research B,
2013
), see www.SRIM.org.
38.
E.
Kano
,
K.
Kataoka
,
J.
Uzuhashi
,
K.
Chokawa
,
H.
Sakurai
,
A.
Uedono
,
T.
Narita
,
K.
Sierakowski
,
M.
Bockowski
,
R.
Otsuki
, and
K.
Kobayashi
, “
Atomic resolution analysis of extended defects and Mg agglomeration in Mg-ion-implanted GaN and their impacts on acceptor formation
,”
J. Appl. Phys.
132
(
6
), 065703 (
2022
).
39.
L. M.
Amorim
, “
Lattice site location of electrical dopant impurities in group-III nitrides
,”
Ph.D. thesis
(
KU Leuven
,
2016
).
40.
A.
Uedono
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
H.
Matsuyama
,
W.
Egger
,
T.
Koschine
,
C.
Hugenschmidt
,
M.
Dickmann
,
K.
Kojima
,
S.
Chichibu
, and S. Ishibashi, “
Carrier trapping by vacancy-type defects in Mg-implanted GaN studied using monoenergetic positron beams
,”
Phys. Status Solidi B
255
(
4
),
1700521
(
2018
).
41.
J. D.
Greenlee
,
B.
Feigelson
,
T. J.
Anderson
,
J. K.
Hite
,
K. D.
Hobart
, and
F. J.
Kub
, “
From MRTA to SMRTA: Improvements in activating implanted dopants in GaN
,”
ECS Trans.
69
(
14
), 97 (
2015
).
You do not currently have access to this content.