The all-solid-state batteries (ASSBs) are of particular interest because of their higher energy density and improved safety. However, the interfacial instability and resulting high interfacial resistance between the cathode and solid electrolyte (SE) have become the major challenges for the practical application of ASSBs. Herein, we report a stable LiFePO4 cathode/γ-Li3PO4 SE interface and systemically investigate the mechanism of Li-ion transport at the interface and the effects of surface nitrogen doping using first-principles calculations. It is found that delithiation at the LiFePO4/γ-Li3PO4 interface initially occurs at the topmost layer of the LiFePO4 cathode side, and hopping through the interface barrier is a rate-limiting step for Li mobility. Nitrogen doping leads to local structural distortion occurred at the interface, affecting the interfacial Li+ diffusion kinetics. Furthermore, the underlying mechanisms in which the different N doping sites alter the Li diffusion barrier are analyzed. We find that, by a rational design, N doping could significantly enhance Li+ diffusion kinetics. Further analysis of the electronic structure of the interface system reveals that the Li3PO4 electrolyte is electrochemically stable against the LiFePO4 cathode in the N-doped interface. Our findings provide a microscopic understanding of the Li+ transport at solid–solid LiFePO4/γ-Li3PO4 interface and suggest that controlling synthesis condition can be critical for enhancing Li+ transport at the N-doped LiFePO4/γ-Li3PO4 interface in an ASSB.

1.
R.
Chen
,
Q.
Li
,
X.
Yu
,
L.
Chen
, and
H.
Li
, “
Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces
,”
Chem. Rev.
120
,
6820
6877
(
2020
).
2.
W.
Xia
,
Y.
Zhao
,
F.
Zhao
,
K.
Adair
,
R.
Zhao
,
S.
Li
,
R.
Zou
,
Y.
Zhao
, and
X.
Sun
, “
Antiperovskite electrolytes for solid-state batteries
,”
Chem. Rev.
122
,
3763
3819
(
2022
).
3.
T.
Famprikis
,
P.
Canepa
,
J. A.
Dawson
,
M. S.
Islam
, and
C.
Masquelier
, “
Fundamentals of inorganic solid-state electrolytes for batteries
,”
Nat. Mater.
18
,
1278
1291
(
2019
).
4.
C.
Wang
,
J.
Liang
,
J. T.
Kim
, and
X.
Sun
, “
Prospects of halide-based all-solid-state batteries: From material design to practical application
,”
Sci. Adv.
8
,
eadc9516
(
2022
).
5.
Y.
Seino
,
T.
Ota
,
K.
Takada
,
A.
Hayashi
, and
M.
Tatsumisago
, “
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
,”
Energy Environ. Sci.
7
,
627
631
(
2014
).
6.
Y.
Kato
,
S.
Hori
,
T.
Saito
,
K.
Suzuki
,
M.
Hirayama
,
A.
Mitsui
,
M.
Yonemura
,
H.
Iba
, and
R.
Kanno
, “
High-power all-solid-state batteries using sulfide superionic conductors
,”
Nat. Energy
1
,
16030
(
2016
).
7.
P.
Adeli
,
J. D.
Bazak
,
K. H.
Park
,
I.
Kochetkov
,
A.
Huq
,
G. R.
Goward
, and
L. F.
Nazar
, “
Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution
,”
Angew. Chem. Int. Ed.
131
,
8773
8778
(
2019
).
8.
Y. B.
Song
,
D. H.
Kim
,
H.
Kwak
,
D.
Han
,
S.
Kang
,
J. H.
Lee
,
S.-M.
Bak
,
K.-W.
Nam
,
H.-W.
Lee
, and
Y. S.
Jung
, “
Tailoring solution-processable Li argyrodites Li6+xP1–xMxS5I (M = Ge, Sn) and their microstructural evolution revealed by Cryo-TEM for all-solid-state batteries
,”
Nano Lett.
20
,
4337
4345
(
2020
).
9.
C.
Yu
,
S.
Ganapathy
,
E. R. H.
Van Eck
,
H.
Wang
,
S.
Basak
,
Z.
Li
, and
M.
Wagemaker
, “
Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface
,”
Nat. Commun.
8
,
1086
(
2017
).
10.
S. A.
Pervez
,
M. A.
Cambaz
,
V.
Thangadurai
, and
M.
Fichtner
, “
Interface in solid-state lithium battery: Challenges, progress, and outlook
,”
ACS Appl. Mater. Interfaces
11
,
22029
22050
(
2019
).
11.
S.
Wang
,
H.
Xu
,
W.
Li
,
A.
Dolocan
, and
A.
Manthiram
, “
Interfacial chemistry in solid-state batteries: Formation of interphase and its consequences
,”
J. Am. Chem. Soc.
140
,
250
257
(
2018
).
12.
C.
Wang
,
K.
Adair
, and
X.
Sun
, “
All-solid-state lithium metal batteries with sulfide electrolytes: Understanding interfacial ion and electron transport
,”
Acc. Mater. Res.
3
,
21
32
(
2022
).
13.
H.
Kwak
,
S.
Wang
,
J.
Park
,
Y.
Liu
,
K. T.
Kim
,
Y.
Choi
,
Y.
Mo
, and
Y. S.
Jung
, “
Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications
,”
ACS Energy Lett.
7
,
1776
1805
(
2022
).
14.
A.
Banerjee
,
X.
Wang
,
C.
Fang
,
E. A.
Wu
, and
Y. S.
Meng
, “
Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes
,”
Chem. Rev.
120
,
6878
6933
(
2020
).
15.
X.
Chen
,
W.
He
,
L.-X.
Ding
,
S.
Wang
, and
H.
Wang
, “
Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework
,”
Energy Environ. Sci.
12
,
938
944
(
2019
).
16.
K.
Kim
and
D. J.
Siegel
, “
Predicting wettability and the electrochemical window of lithium metal/solid electrolyte interfaces
,”
ACS Appl. Mater. Interfaces
11
,
39940
39950
(
2019
).
17.
W. D.
Richards
,
L. J.
Miara
,
Y.
Wang
,
J. C.
Kim
, and
G.
Ceder
, “
Interface stability in solid-state batteries
,”
Chem. Mater.
28
,
266
273
(
2016
).
18.
R. E.
Warburton
,
J. J.
Kim
,
S.
Patel
,
J. D.
Howard
,
L. A.
Curtiss
,
C.
Wolverton
,
D. B.
Buchholz
,
J. T.
Vaughey
,
P.
Fenter
,
T. T.
Fister
, and
J.
Greeley
, “
Tailoring interfaces in solid-state batteries using interfacial thermochemistry and band alignment
,”
Chem. Mater.
33
,
8447
8459
(
2021
).
19.
Y.
Xiao
,
Y.
Wang
,
S.-H.
Bo
,
J. C.
Kim
,
L. J.
Miara
, and
G.
Ceder
, “
Understanding interface stability in solid-state batteries
,”
Nat. Rev. Mater.
5
,
105
126
(
2020
).
20.
M. W.
Swift
and
Y.
Qi
, “
First-principles prediction of potentials and space-charge layers in all-solid-state batteries
,”
Phys. Rev. Lett.
122
,
167701
(
2019
).
21.
N. J. J.
de Klerk
and
M.
Wagemaker
, “
Space-charge layers in all-solid-state batteries: Important or negligible?
,”
ACS Appl. Energy Mater.
1
,
5609
5618
(
2018
). doi:
22.
J.
Haruyama
,
K.
Sodeyama
,
L.
Han
,
K.
Takada
, and
Y.
Tateyama
, “
Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery
,”
Chem. Mater.
26
,
4248
4255
(
2014
).
23.
K.
Takada
,
N.
Ohta
,
L.
Zhang
,
K.
Fukuda
,
I.
Sakaguchi
,
R.
Ma
,
M.
Osada
, and
T.
Sasaki
, “
Interfacial modification for high-power solid-state lithium batteries
,”
Solid State Ionics
179
,
1333
1337
(
2008
).
24.
T.
Kato
,
T.
Hamanaka
,
K.
Yamamoto
,
T.
Hirayama
,
F.
Sagane
,
M.
Motoyama
, and
Y.
Iriyama
, “
In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery
,”
J. Power Sources
260
,
292
298
(
2014
).
25.
N.
Ohta
,
K.
Takada
,
L.
Zhang
,
R.
Ma
,
M.
Osada
, and
T.
Sasaki
, “
Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification
,”
Adv. Mater.
18
,
2226
2229
(
2006
).
26.
N.
Ohta
,
K.
Takada
,
I.
Sakaguchi
,
L.
Zhang
,
R.
Ma
,
K.
Fukuda
,
M.
Osada
, and
T.
Sasaki
, “
LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries
,”
Electrochem. Commun.
9
,
1486
1490
(
2007
).
27.
A.
Sakuda
,
A.
Hayashi
, and
M.
Tatsumisago
, “
Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy
,”
Chem. Mater.
22
,
949
956
(
2010
).
28.
B.
Gao
,
R.
Jalem
, and
Y.
Tateyama
, “
First-principles study of microscopic electrochemistry at the LiCoO2 cathode/LiNbO3 coating/β-Li3PS4 solid electrolyte interfaces in an all-solid-state battery
,”
ACS Appl. Mater. Interfaces
13
,
11765
11773
(
2021
).
29.
J.
Lee
,
W.
Zhou
,
J. C.
Idrobo
,
S. J.
Pennycook
, and
S. T.
Pantelides
, “
Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4
,”
Phys. Rev. Lett.
107
,
085507
(
2011
).
30.
K.-S.
Park
,
P.
Xiao
,
S.-Y.
Kim
,
A.
Dylla
,
Y.-M.
Choi
,
G.
Henkelman
,
K. J.
Stevenson
, and
J. B.
Goodenough
, “
Enhanced charge-transfer kinetics by anion surface modification of LiFePO4
,”
Chem. Mater.
24
,
3212
3218
(
2012
).
31.
L.
Dimesso
,
C.
Spanheimer
,
W.
Jaegermann
,
Y.
Zhang
, and
A. L.
Yarin
, “
LiFePO4–3D carbon nanofiber composites as cathode materials for Li-ions batteries
,”
J. Appl. Phys.
111
,
064307
(
2012
).
32.
K.
Takahashi
,
K.
Hattori
,
T.
Yamazaki
,
K.
Takada
,
M.
Matsuo
,
S.
Orimo
,
H.
Maekawa
, and
H.
Takamura
, “
All-solid-state lithium battery with LiBH4 solid electrolyte
,”
J. Power Sources
226
,
61
64
(
2013
).
33.
N.
Kuwata
,
N.
Iwagami
,
Y.
Matsuda
,
Y.
Tanji
, and
J.
Kawamura
, “
Thin film batteries with Li3PO4 solid electrolyte fabricated by pulsed laser deposition
,”
ECS Trans.
16
,
53
60
(
2009
).
34.
S.-X.
Zhao
,
H.
Ding
,
Y.-C.
Wang
,
B.-H.
Li
, and
C.-W.
Nan
, “
Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon
,”
J. Alloys Compd.
566
,
206
211
(
2013
).
35.
M.
Sumita
,
Y.
Tanaka
,
M.
Ikeda
, and
T.
Ohno
, “
Theoretically designed Li3PO4 (100)/LiFePO4 (010) coherent electrolyte/cathode interface for all solid-state Li ion secondary batteries
,”
J. Phys. Chem. C
119
,
14
22
(
2015
).
36.
M. W.
Swift
,
H.
Jagad
,
J.
Park
,
Y.
Qie
,
Y.
Wu
, and
Y.
Qi
, “
Predicting low-impedance interfaces for solid-state batteries
,”
Curr. Opin. Solid State Mater. Sci.
26
,
100990
(
2022
).
37.
K.
Yamamoto
,
T.
Yoshinari
,
A.
Kuwabara
,
E.
Kato
,
Y.
Orikasa
,
K.
Nakanishi
,
T.
Uchiyama
,
K.
Maeda
,
H.
Kageyama
,
T.
Ohta
, and
Y.
Uchimoto
, “
Accelerated lithium ions diffusion at the interface between LiFePO4 electrode and electrolyte by surface-nitride treatment
,”
Solid State Ionics
373
,
115792
(
2021
).
38.
B.
Gao
,
R.
Jalem
, and
Y.
Tateyama
, “
Surface-dependent stability of the interface between garnet Li7La3Zr2O12 and the Li metal in the all-solid-state battery from first-principles calculations
,”
ACS Appl. Mater. Interfaces
12
,
16350
16358
(
2020
).
39.
L.
Wang
,
F.
Zhou
,
Y. S.
Meng
, and
G.
Ceder
, “
First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential
,”
Phys. Rev. B
76
,
165435
(
2007
).
40.
K.
Shimizu
,
W.
Liu
,
W.
Li
,
S.
Kasamatsu
,
Y.
Ando
,
E.
Minamitani
, and
S.
Watanabe
, “
First-principles study of Li-ion distribution at γ-Li3PO4/metal interfaces
,”
Phys. Rev. Mater.
4
,
015402
(
2020
).
41.
S.
Nishimura
,
G.
Kobayashi
,
K.
Ohoyama
,
R.
Kanno
,
M.
Yashima
, and
A.
Yamada
, “
Experimental visualization of lithium diffusion in LixFePO4
,”
Nat. Mater.
7
,
707
711
(
2008
).
42.
G.
Xu
,
K.
Zhong
,
J.-M.
Zhang
, and
Z.
Huang
, “
First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO4 by sulfur surface modification
,”
J. Appl. Phys.
116
,
063703
(
2014
).
43.
Y. A.
Du
and
N. A. W.
Holzwarth
, “
Li ion diffusion mechanisms in the crystalline electrolyte γ-Li3PO4
,”
J. Electrochem. Soc.
154
,
A999
A1004
(
2007
).
44.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
45.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
47.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study
,”
Phys. Rev. B
57
,
1505
1509
(
1998
).
48.
K.
Hoang
and
M.
Johannes
, “
Tailoring native defects in LiFePO4: Insights from first-principles calculations
,”
Chem. Mater.
23
,
3003
3013
(
2011
).
49.
G.
Xu
,
K.
Zhong
,
Y.
Yang
,
J.-M.
Zhang
, and
Z.
Huang
, “
Insight into delithiation process on the LiFePO4 (010) surface from a novel viewpoint of the work function
,”
Solid State Ionics
338
,
25
30
(
2019
).
50.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
51.
J.
Jung
,
M.
Cho
, and
M.
Zhou
, “
Ab initio study of the fracture energy of LiFePO4/FePO4 interfaces
,”
J. Power Sources
243
,
706
714
(
2013
).
52.
G.
Rousse
,
J.
Rodriguez-Carvajal
,
S.
Patoux
, and
C.
Masquelier
, “
Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4
,”
Chem. Mater.
15
,
4082
4090
(
2003
).
53.
Y.
Okuno
,
J.
Haruyama
, and
Y.
Tateyama
, “
Comparative study on sulfide and oxide electrolyte interfaces with cathodes in all-solid-state battery via first-principles calculations
,”
ACS Appl. Energy Mater.
3
,
11061
11072
(
2020
).
54.
B.
Wang
,
B. C.
Chakoumakos
,
B. C.
Sales
,
B. S.
Kwak
, and
J. B.
Bates
, “
Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure
,”
J. Solid State Chem.
115
,
313
323
(
1995
).
55.
J. P.
Sun
,
J.
Dai
,
Y.
Song
,
Y.
Wang
, and
R.
Yang
, “
Affinity of the interface between hydroxyapatite (0001) and titanium (0001) surfaces: A first-principles investigation
,”
ACS Appl. Mater. Interfaces
6
,
20738
20751
(
2014
).
56.
B.
Gao
,
R.
Jalem
,
Y.
Ma
, and
Y.
Tateyama
, “
Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme
,”
Chem. Mater.
32
,
85
96
(
2020
).
57.
L.
Guo
,
J.
Li
,
H.
Wang
,
N.
Zhao
,
C.
Shi
,
L.
Ma
,
C.
He
,
F.
He
, and
E.
Liu
, “
Dopant-modulating mechanism of lithium adsorption and diffusion at the graphene/Li2S interface
,”
Phys. Rev. Appl.
9
,
024010
(
2018
).
58.
G.
Xu
,
K.
Zhong
,
J.-M.
Zhang
, and
Z.
Huang
, “
First-principles study of structural, electronic and Li-ion diffusion properties of N-doped LiFePO4 (010) surface
,”
Solid State Ionics
281
,
1
5
(
2015
).
59.
K.
Zhong
,
R.
Hu
,
G.
Xu
,
Y.
Yang
,
J.-M.
Zhang
, and
Z.
Huang
, “
Adsorption and ultrafast diffusion of lithium in bilayer graphene: Ab initio and kinetic Monte Carlo simulation study
,”
Phys. Rev. B
99
,
155403
(
2019
).
60.
D.-H.
Seo
,
H.
Gwon
,
S.-W.
Kim
,
J.
Kim
, and
K.
Kang
, “
Multicomponent olivine cathode for lithium rechargeable batteries: A first-principles study
,”
Chem. Mater.
22
,
518
523
(
2010
).
You do not currently have access to this content.