The strain field of the emitters of one unstressed and two electrically stressed oxide-confined GaAs-based vertical-cavity surface-emitting lasers has been analyzed. The components of the strain tensor in the optical aperture, in the quantum wells, and at the oxide edge of the lamellas have been measured by nano-beam precession electron diffraction and geometrical phase analysis. The measurements have been used to validate the simulations based on the finite element method (FEM) of the mechanical behavior of the emitters. The FEM model is used to quantify the strain caused by the lattice mismatch of the GaAs-based epitaxial layers and the volume variation of the Al 98Ga 2As layer due to selective oxidation. The first is calculated as a function of the misfit strain and corresponds very well to the measured values. The latter is calibrated assuming that the thickness of the oxide is expanded by 4 % in both the unstressed sample and the stressed sample with dislocations. Instead, it is contracted by 8 % for the sample where the stress test has caused further oxidation.

1.
VCSEL Market by Type, Application, Materials, End Users—Global Opportunity Analysis and Industry Forecast, 2020-2030 (Next Move Strategy Consulting, 2020).
2.
VCSEL Market—Growth, Trends, COVID-19 Impact, and Forecasts, 2021-2026 (Mordor Intelligence LLP, 2021).
3.
S. Y.
Preeti Wadhwani
, VCSEL Market Size by Type, Material Type, Wavelength, Application, Industry Verticals—Competitive Market Share and Forecast, 2021–2027 (2021).
4.
M. H.
MacDougal
,
H.
Zhao
,
P. M.
Dapkus
,
P. M.
Ziari
, and
W. H.
Steier
, “
Wide-bandwidth distributed Bragg reflectors using oxide-GaAs multilayers
,”
Electron. Lett.
30
,
1147
(
1994
).
5.
O.
Ueda
and
S.
Pearton
,
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices
(
William Andrew
,
2013
).
6.
K.
Maeda
and
S.
Takeuchi
, “Enhancement of dislocation mobility in semiconducting crystals by electronic excitation,” in L12 Ordered Alloys, Dislocations in Solids, edited by F. Nabarro and M. Duesbery (Elsevier, 1996), Vol. 10, Chap. 54, pp. 443–504.
7.
D. T.
Mathes
,
R.
Hull
,
K. D.
Choquette
,
K. M.
Geib
,
A. A.
Allerman
,
J. K.
Guenter
,
B.
Hawkins
, and
R. A.
Hawthorne
, “
Nanoscale materials characterization of degradation in VCSELs
,”
Proc. SPIE
4994
,
67
82
(
2003
).
8.
I.
Yonenaga
, “
Atomic structures and dynamic properties of dislocations in semiconductors: Current progress and stagnation
,”
Semicond. Sci. Technol.
35
,
043001
(
2020
).
9.
C. J.
Helms
,
I.
Aeby
,
W.
Luo
,
R. W.
Herrick
, and
A.
Yuen
, “
Reliability of oxide VCSELs at Emcore
,”
Proc. SPIE
5364
,
183
189
(
2004
).
10.
R. W.
Herrick
,
A.
Dafinca
,
P.
Farthouat
,
A. A.
Grillo
,
S. J.
McMahon
, and
A. R.
Weidberg
, “
Corrosion-based failure of oxide-aperture VCSELs
,”
IEEE J. Quantum Electron.
49
,
1045
(
2013
).
11.
R. W.
Herrick
, “Reliability and degradation of vertical-cavity surface-emitting lasers,” in Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer Science+Business Media, New York, 2013), p. 147, ISBN: 978-1-4614-4336-0.
12.
R. W.
Herrick
, “
Design for reliability and common failure mechanisms in vertical cavity surface emitting lasers
,”
MRS Online Proc. Lib.
1432
,
9
20
(
2012
).
13.
T.
Kim
,
T.
Kim
,
S.
Kim
, and
S.-B.
Kim
, “
Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge
,”
ETRI J.
30
,
833
(
2008
).
14.
M.
Vanzi
,
G.
Mura
,
G.
Marcello
, and
K.
Xiao
, “
ESD tests on 850 nm GaAs-based VCSELs
,”
Microelectron. Reliab.
64
,
617
(
2016
).
15.
R.
Fabbro
,
T.
Haber
,
G.
Fasching
,
R.
Coppeta
,
M.
Pusterhofer
, and
W.
Grogger
, “
Defect localization in high-power vertical cavity surface emitting laser arrays by means of reverse biased emission microscopy
,”
Meas. Sci. Technol.
32
,
095406
(
2021
).
16.
R.
Fabbro
,
R.
Coppeta
,
M.
Pusterhofer
,
G.
Fasching
,
T.
Haber
, and
W.
Grogger
, “
In-situ observation of lateral AlAs oxidation and dislocation formation in VCSELs
,”
Micron
158
,
103264
(
2022
).
17.
M.
Feng
,
C.-H.
Wu
, and
N.
Holonyak
, “
Oxide-confined VCSELs for high-speed optical interconnects
,”
IEEE J. Quantum Electron.
54
,
1
(
2018
).
18.
J.
Dallesasse
,
N.
Holonyak
,
A. R.
Sugg
,
T. A.
Richard
, and
N.
El-Zein
, “
Hydrolization oxidation of Al xGa 1 xAs–AlAs-GaAs quantum well heterostructures and superlattices
,”
Appl. Phys. Lett.
57
,
2844
(
1990
).
19.
D. L.
Huffacker
,
D. G.
Deppe
,
K.
Kumar
, and
T. J.
Rogers
, “
Native-oxide defined ring contact for low threshold vertical-cavity lasers
,”
Appl. Phys. Lett.
65
,
97
(
1994
).
20.
E. J.
Frankberg
,
Plastic Deformation of Amorphous Aluminium Oxide: Flow of Inorganic Glass at Room Temperature
(
Tampere University of Technology
,
2018
).
21.
F.
Kießling
,
T.
Niermann
,
M.
Lehmann
,
J. H.
Schulze
,
A.
Strittmatter
,
A.
Schliwa
, and
U. W.
Pohl
, “
Strain field of a buried oxide aperture
,”
Phys. Rev. B
91
,
075306
(
2015
).
22.
A.
Strittmatter
,
A.
Holzbecher
,
A.
Schliwa
,
J.-H.
Schulze
,
D.
Quandt
,
T. D.
Germann
,
A.
Dreismann
,
O.
Hitzemann
,
E.
Stock
,
I. A.
Ostapenko
,
S.
Rodt
,
W.
Unrau
,
U. W.
Pohl
,
A.
Hoffmann
,
D.
Bimberg
, and
V.
Haisler
, “
Site-controlled quantum dot growth on buried oxide stressor layers
,”
Phys. Status Solidi A
209
,
2411
(
2012
).
23.
J.-L.
Rouviere
,
A.
Béché
,
Y.
Martin
,
T.
Denneulin
, and
D.
Cooper
, “
Improved strain precision with high spatial resolution using nanobeam precession electron diffraction
,”
Appl. Phys. Lett.
103
,
241913
(
2013
).
24.
M.
Hÿtch
,
E.
Snoeck
, and
R.
Kilaas
, “
Quantitative measurement of displacement and strain fields from HREM micrographs
,”
Ultramicroscopy
74
,
131
(
1998
).
25.
T.
Takamori
,
K.
Takemasa
, and
T.
Kamijoh
, “
Interface structure of selectively oxidized AlAs/GaAs
,”
Appl. Phys. Lett.
69
,
659
(
1996
).
26.
R.
Keller
,
A.
Roshko
,
R.
Geiss
,
K.
Bertness
, and
T.
Quinn
, “
EBSD measurement of strains in GaAs due to oxidation of buried AlGaAs layers
,”
Microelectron. Eng.
75
,
96
(
2004
).
27.
R.
Twesten
,
D.
Follstead
,
K. D.
Choquette
, and
R.
Schneider
, “
Microstructure of laterally oxidized Al xGa 1 - xAs layers in vertical-cavity lasers
,”
Appl. Phys. Lett.
69
,
19
(
1996
).
28.
D.
Cooper
,
T.
Denneulin
,
N.
Bernier
,
A.
Béché
, and
J.-L.
Rouvière
, “
Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope
,”
Micron
80
,
145
(
2016
).
29.
N.
Perez
,
Theory of Elasticity
(
Springer
,
2017
).
30.
S.-E.
Ungersboeck
, “Advanced modeling of strained CMOS technology,” Ph.D. thesis (Vienna University of Technology, 2007).
31.
R.
Coppeta
,
D.
Holec
,
H.
Ceric
, and
T.
Grasser
, “
Evaluation of dislocation energy in thin films
,”
Philos. Mag.
95
,
186
(
2015
).
32.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys
,
2nd ed.
(
Chapman & Hall
,
1992
).
33.
L. B.
Freund
and
S.
Suresh
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
(
Cambridge University Press
,
2004
).
34.
S.
Wang
and
P.
Pirouz
, “
Mechanical properties of undoped GaAs. Part I: Yield stress measurements
,”
Acta Mater.
55
,
5500
(
2007
).
35.
M.
Chen
,
J.
Wehrs
,
J.
Michler
, and
J.
Wheeler
, “
High-temperature in situ deformation of GaAs micro-pillars: Lithography versus FIB machining
,”
JOM
68
,
2761
(
2016
).
36.
N.
Dowling
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
(
Prentice-Hall
,
1993
).
37.
C.
Koughia
,
S.
Kasap
, and
P.
Capper
,
Springer Handbook of Electronic and Photonic Materials
(
Springer-Verlag
,
Berlin
,
2007
).
38.
D. T.
Mathes
, “Materials issues for VCSEL operation and reliability,” Ph.D. thesis (University of Virginia, 2002).
39.
R.
Coppeta
,
R.
Fabbro
,
M.
Pusterhofer
,
T.
Haber
, and
G.
Fasching
, “
Thermomechanical model of an oxide-confined GaAs-based VCSEL emitter
,”
Microelectron. Reliab.
140
,
114828
(
2023
).
You do not currently have access to this content.