In this work, we show that the use of silica nanoparticles improves the imaging and 3D-morphological measurement down to nanometer thicknesses of fixed cells in solution with picosecond ultrasonics (PU). Synchronized ultrafast fs-laser pulses are used to generate coherent acoustic phonons (CAPs) that evoke the Brillouin light scattering and enable the recording of the time-resolved Brillouin oscillations along with the propagation of the acoustic nanopulses through a thin transparent cell in solution. Silica nanoparticles, whose size matches the phonon wavelength at the frequency of the Brillouin scattering in the solution, are used to strongly scatter the CAPs in the solution. Suppressing the Brillouin signature of the surrounding liquid, this protocol improves significantly the PU imaging and makes it possible to measure the mechanical properties of a transparent cell, including the thin peripheral region where the thickness is less than the Brillouin wavelength, equal to half the probe light wavelength in the cell, and where crucial interaction of the cell with its surroundings occurs. We present experimental evidence of the considerable improvement in the cartography of the entire cell using nanoparticles. The intricate frequency dependence of Brillouin scattering and of resonances for a very thin cell is analyzed using a semi-analytical model leading to the challenging measurement of the 3D-morphology of the immersed cell at thicknesses down to 1 / 9 of the optical wavelength.

1.
C.
Zhu
,
G.
Bao
, and
N.
Wang
, “
Cell mechanics: Mechanical response, cell adhesion, and molecular deformation
,”
Annu. Rev. Biomed. Eng.
2
,
189
226
(
2000
).
2.
S.
Suresh
, “
Biomechanics and biophysics of cancer cells
,”
Acta Biomater.
3
,
413
438
(
2007
).
3.
D.-H.
Kim
,
P. K.
Wong
,
J.
Park
,
A.
Levchenko
, and
Y.
Sun
, “
Microengineered platforms for cell mechanobiology
,”
Annu. Rev. Biomed. Eng.
11
,
203
233
(
2009
).
4.
C.
Matellan
and
A. E.
del Río Hernández
, “
Where no hand has gone before: Probing mechanobiology at the cellular level
,”
ACS Biomater. Sci. Eng.
5
,
3703
3719
(
2018
).
5.
H.-J.
Butt
,
E.
Wolff
,
S.
Gould
,
B.
Dixon Northern
,
C.
Peterson
, and
P.
Hansma
, “
Imaging cells with the atomic force microscope
,”
J. Struct. Biol.
105
,
54
61
(
1990
).
6.
R. W.
Style
,
R.
Boltyanskiy
,
G. K.
German
,
C.
Hyland
,
C. W.
MacMinn
,
A. F.
Mertz
,
L. A.
Wilen
,
Y.
Xu
, and
E. R.
Dufresne
, “
Traction force microscopy in physics and biology
,”
Soft Matter
10
,
4047
4055
(
2014
).
7.
R. M.
Hochmuth
, “
Micropipette aspiration of living cells
,”
J. Biomech.
33
,
15
22
(
2000
).
8.
P.-H.
Wu
,
D. R.-B.
Aroush
,
A.
Asnacios
,
W.-C.
Chen
,
M. E.
Dokukin
,
B. L.
Doss
,
P.
Durand-Smet
,
A.
Ekpenyong
,
J.
Guck
,
N. V.
Guz
, and
P. A.
Janmey
, “
A comparison of methods to assess cell mechanical properties
,”
Nat. Methods
15
,
491
498
(
2018
).
9.
C.
Thomsen
,
J.
Strait
,
Z.
Vardeny
,
H. J.
Maris
,
J.
Tauc
, and
J.
Hauser
, “
Coherent phonon generation and detection by picosecond light pulses
,”
Phys. Rev. Lett.
53
,
989
(
1984
).
10.
T.
Dehoux
,
M.
Abi Ghanem
,
O.
Zouani
,
J.-M.
Rampnoux
,
Y.
Guillet
,
S.
Dilhaire
,
M.-C.
Durrieu
, and
B.
Audoin
, “
All-optical broadband ultrasonography of single cells
,”
Sci. Rep.
5
,
8650
(
2015
).
11.
C.
Thomsen
,
H.
Grahn
,
H.
Maris
, and
J.
Tauc
, “
Picosecond interferometric technique for study of phonons in the Brillouin frequency range
,”
Opt. Commun.
60
,
55
58
(
1986
).
12.
V. E.
Gusev
and
P.
Ruello
, “
Advances in applications of time-domain Brillouin scattering for nanoscale imaging
,”
Appl. Phys. Rev.
5
,
031101
(
2018
).
13.
C.
Rossignol
,
N.
Chigarev
,
M.
Ducousso
,
B.
Audoin
,
G.
Forget
,
F.
Guillemot
, and
M.
Durrieu
, “
In vitro picosecond ultrasonics in a single cell
,”
Appl. Phys. Lett.
93
,
123901
(
2008
).
14.
A.
Viel
,
E.
Peronne
,
O.
Sénépart
,
L.
Becerra
,
C.
Legay
,
F.
Semprez
,
L.
Trichet
,
T.
Coradin
,
A.
Hamraoui
, and
L.
Belliard
, “
Picosecond ultrasounds as elasticity probes in neuron-like cells models
,”
Appl. Phys. Lett.
115
,
213701
(
2019
).
15.
S.
Danworaphong
,
M.
Tomoda
,
Y.
Matsumoto
,
O.
Matsuda
,
T.
Ohashi
,
H.
Watanabe
,
M.
Nagayama
,
K.
Gohara
,
P.
Otsuka
, and
O.
Wright
, “
Three-dimensional imaging of biological cells with picosecond ultrasonics
,”
Appl. Phys. Lett.
106
,
163701
(
2015
).
16.
A.
Gadalla
,
T.
Dehoux
, and
B.
Audoin
, “
Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves
,”
Planta
239
,
1129
1137
(
2014
).
17.
L.
Liu
,
M.
Simon
,
G.
Muggiolu
,
F.
Vilotte
,
M.
Antoine
,
J.
Caron
,
G.
Kantor
,
P.
Barberet
,
H.
Seznec
, and
B.
Audoin
, “
Changes in intra-nuclear mechanics in response to DNA damaging agents revealed by time-domain Brillouin micro-spectroscopy
,”
Photoacoustics
27
,
100385
(
2022
).
18.
L.
Liu
,
A.
Viel
,
G.
Le Saux
,
L.
Plawinski
,
G.
Muggiolu
,
P.
Barberet
,
M.
Pereira
,
C.
Ayela
,
H.
Seznec
,
M.-C.
Durrieu
,
J.-M.
Olive
, and
B.
Audoin
, “
Remote imaging of single cell 3D morphology with ultrafast coherent phonons and their resonance harmonics
,”
Sci. Rep.
9
,
6409
(
2019
).
19.
F.
Pérez-Cota
,
R. J.
Smith
,
E.
Moradi
,
L.
Marques
,
K. F.
Webb
, and
M.
Clark
, “
High resolution 3D imaging of living cells with sub-optical wavelength phonons
,”
Sci. Rep.
6
,
39326
(
2016
).
20.
R. J.
Smith
,
F.
Pérez-Cota
,
L.
Marques
, and
M.
Clark
, “
3D phonon microscopy with sub-micron axial-resolution
,”
Sci. Rep.
11
,
3301
(
2021
).
21.
M.-F.
Ponge
,
L.
Liu
,
C.
Aristégui
, and
B.
Audoin
, “
Scattering of GHz coherent acoustic phonons by silica nanoparticles in water probed with the time-domain Brillouin spectroscopy
,”
Appl. Phys. Lett.
115
,
133101
(
2019
).
22.
T.
Dehoux
,
M.
Abi Ghanem
,
O. F.
Zouani
,
M.
Ducousso
,
N.
Chigarev
,
C.
Rossignol
,
N.
Tsapis
,
M.-C.
Durrieu
, and
B.
Audoin
, “
Probing single-cell mechanics with picosecond ultrasonics
,”
Ultrasonics
56
,
160
171
(
2015
).
23.
F.
Pérez-Cota
,
R. J.
Smith
,
E.
Moradi
,
L.
Marques
,
K. F.
Webb
, and
M.
Clark
, “
Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells
,”
Appl. Opt.
54
,
8388
8398
(
2015
).
24.
L.
Liu
,
L.
Plawinski
,
M.-C.
Durrieu
, and
B.
Audoin
, “
Label-free multi-parametric imaging of single cells: Dual picosecond optoacoustic microscopy
,”
J. Biophotonics
12
,
e201900045
(
2019
).
25.
M.
Abi Ghanem
,
T.
Dehoux
,
L.
Liu
,
G.
Le Saux
,
L.
Plawinski
,
M.-C.
Durrieu
, and
B.
Audoin
, “
Opto-acoustic microscopy reveals adhesion mechanics of single cells
,”
Rev. Sci. Instrum.
89
,
014901
(
2018
).
26.
A.
Bartels
,
F.
Hudert
,
C.
Janke
,
T.
Dekorsy
, and
K.
Köhler
, “
Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line
,”
Appl. Phys. Lett.
88
,
041117
(
2006
).
27.
A.
Abbas
,
Y.
Guillet
,
J.-M.
Rampnoux
,
P.
Rigail
,
E.
Mottay
,
B.
Audoin
, and
S.
Dilhaire
, “
Picosecond time resolved opto-acoustic imaging with 48 MHz frequency resolution
,”
Opt. Express
22
,
7831
7843
(
2014
).
28.
C.
Thomsen
,
H. T.
Grahn
,
H. J.
Maris
, and
J.
Tauc
, “
Surface generation and detection of phonons by picosecond light pulses
,”
Phys. Rev. B
34
,
4129
(
1986
).
29.
O.
Wright
, “
Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics
,”
J. Appl. Phys.
71
,
1617
1629
(
1992
).
30.
O.
Matsuda
and
O.
Wright
, “
Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation
,”
J. Opt. Soc. Am. B
19
,
3028
3041
(
2002
).
31.
O.
Matsuda
,
M. C.
Larciprete
,
R. L.
Voti
, and
O. B.
Wright
, “
Fundamentals of picosecond laser ultrasonics
,”
Ultrasonics
56
,
3
20
(
2015
).
32.
P.
Johnson
and
R.
Christy
, “
Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd
,”
Phys. Rev. B
9
,
5056
(
1974
).
33.
J.
Xu
,
X.
Ren
,
W.
Gong
,
R.
Dai
, and
D.
Liu
, “
Measurement of the bulk viscosity of liquid by Brillouin scattering
,”
Appl. Opt.
42
,
6704
6709
(
2003
).
34.
L. L.
Foldy
, “
The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers
,”
Phys. Rev.
67
,
107
(
1945
).
35.
C.
Aristégui
and
Y. C.
Angel
, “
Effective mass density and stiffness derived from P-wave multiple scattering
,”
Wave Motion
44
,
153
164
(
2007
).
36.
P. C.
Waterman
and
R.
Truell
, “
Multiple scattering of waves
,”
J. Math. Phys.
2
,
512
537
(
1961
).
37.
L. M.
Brekhovskikh
and
O. A.
Godin
,
Acoustics of Layered Media I: Plane and Quasi-Plane Waves
(
Springer Science & Business Media
,
1990
).
38.
O.
Ternyak
,
R.
Akhvlediani
, and
A.
Hoffman
, “
Study on diamond films with ultra high nucleation density deposited onto alumina, sapphire and quartz
,”
Diamond Relat. Mater.
14
,
323
327
(
2005
).
39.
S.
Burghartz
and
B.
Schulz
, “
Thermophysical properties of sapphire, AlN and MgAl 2O 4 down to 70 K
,”
J. Nucl. Mater.
212
,
1065
1068
(
1994
).
40.
M. J.
Weber
, Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2 (CRC Press, Boca Raton, 2018), Chap. Refractive index, p. 30.
41.
M. J.
Weber
, Handbook of Laser Science and Technology, Volume IV (CRC Press, Boca Raton, 2018), Chap. Metals: Part 4.
42.
Both values were used as fitting parameters. They depend on the experimental fluence. An actual determination would require a dedicated work.
43.
S.
Kashiwada
and
O.
Matsuda
, “
In situ monitoring of the growth of ice films by laser picosecond acoustics
,”
J. Appl. Phys.
100
,
073506
(
2006
).
44.
G.
Scarcelli
,
W. J.
Polacheck
,
H. T.
Nia
,
K.
Patel
,
A.
Grodzinsky
,
R. D.
Kamm
, and
S. H.
Yun
, “
Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy
,”
Nat. Methods
12
,
1132
1134
(
2015
).
45.
J.
Zhang
,
X. A.
Nou
,
H.
Kim
, and
G.
Scarcelli
, “
Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus
,”
Lab Chip
17
,
663
670
(
2017
).
You do not currently have access to this content.