A timing method for experiments on the interaction of a near-infrared laser and an ultra-relativistic electron beam via a semiconductor plasma switch is experimentally validated. As an intermediate medium, a thin Si plate is excited by the energetic, intense electron beam to produce a semiconductor plasma, which in turn deflects counter-colliding laser light having 1 μm wavelength. An electron beam of sub-nC charge sufficiently induces the needed electron number density gradient of 1 × 1020 cm−3 per tens of μm length at the interaction point. Demonstration during an inverse Compton scattering experiment by a counter-colliding electron beam of 300 pC and 70 MeV with an Nd: YAG laser at a wavelength of 1 μm is reported.
REFERENCES
1.
W. P.
Leemans
, R. W.
Schoenlein
, P.
Volfbeyn
, A. H.
Chin
, T. E.
Glover
, P.
Balling
, M.
Zolotorev
, K. J.
Kim
, S.
Chattopadhyay
, and C. V.
Shank
, Phys. Rev. Lett.
77
, 4182
(1996
). 2.
X.
Yan
, A. M.
MacLeod
, W. A.
Gillespie
, G. M. H.
Knippels
, D.
Oepts
, A. F. G.
van der Meer
, and W.
Seidel
, “Subpicosecond electro-optic measurement of relativistic electron pulses
,” Phys. Rev. Lett.
85
, 3404
(2000
). 3.
A. L.
Cavalieri
et al, “Clocking femtosecond x rays
,” Phys. Rev. Lett.
94
, 114801
(2005
). 4.
G.
Berden
, S. P.
Jamison
, A. M.
MacLeod
, W. A.
Gillespie
, B.
Redlich
, and A. F. G.
van der Meer
, “Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles
,” Phys. Rev. Lett.
93
, 114802
(2004
). 5.
C. M.
Scoby
, P.
Musumeci
, J. T.
Moody
, and M. S.
Gutierrez
, “Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction
,” Phys. Rev. ST Accel. Beams
13
, 022801
(2010
). 6.
A.
Deng
, O. S.
Karger
, and B.
Hidding
, “Generation and acceleration of electron bunches from a plasma photocathode
,” Nat. Phys.
15
, 1156
–1160
(2019
). 7.
P. B.
Corkum
, A. J.
Alcock
, and K. E.
Leopold
, “Electron-beam-controlled transmission of 10-μm radiation in semiconductors
,” J. Appl. Phys.
50
, 3079
(1979
). 8.
I. V.
Pogorelsky
et al, “Demonstration of 8 × 1018 photons/second peaked at 1.8
Å in a relativistic Thomson scattering experiment
,” Phys. Rev. ST Accel. Beams
3
, 090702
(2000
). 9.
S. Y.
Tochitsky
, R.
Narang
, C. V.
Filip
et al, “Experiments on laser driven beatwave acceleration in a ponderomotively formed plasma channel
,” Phys. Plasmas
11
, 2875
(2004
). 10.
A.
Ovodenko
et al, “High duty cycle inverse Compton scattering x-ray source
,” Appl. Phys. Lett.
109
, 253504
(2016
). 11.
Y.
Sakai
et al, “Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime
,” Phys. Rev. Accel. Beams
20
, 060701
(2017
). 12.
J.
Duris
et al, “High-quality electron beams from a helical inverse free-electron laser accelerator
,” Nat. Commun.
5
, 4928
(2014
). 13.
W.
Shockley
, “Problems related to p-n junctions in silicon
,” Solid-State Electron.
2
, 35
(1961
). 14.
C. A.
Klein
, “Bandgap dependence and related features of radiation ionization energies in semiconductors
,” J. Appl. Phys.
39
, 2029
(1968
). 15.
See https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html/ for NIST ESTAR database;
H. A.
Bethe
, “Zur theorie des durchgangs schneller korpuskularstrahlen durch materie
,” Ann. Phys.
5
, 325
(1930
); S. M.
Seltzer
and M. J.
Berger
, “Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons
,” Nucl. Instrum. Methods Phys. Res. Sect. B
12
, 95
(1985
).16.
T.
Moss
, G. J.
Burrell
, and B.
Ellis
, Semiconductor Optoelectronics
(Butterworth
, London
, 1973
), pp. 25
–26
.17.
M. A.
Green
and M. J.
Keevers
, “Optical properties of intrinsic silicon at 300 K
,” Prog. Photovolt.: Res. Appl.
3
, 189
–192
(1995
). 18.
M.
Yannai
et al, “Ultrafast electron microscopy of nanoscale charge dynamics in semiconductors
,” ACS Nano
17
, 3645
–3656
(2023
). 19.
I.
Madan
et al, “Charge dynamics electron microscopy: Nanoscale imaging of femtosecond plasma dynamics
,” ACS Nano
17
, 3657
–3665
(2023
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.