A timing method for experiments on the interaction of a near-infrared laser and an ultra-relativistic electron beam via a semiconductor plasma switch is experimentally validated. As an intermediate medium, a thin Si plate is excited by the energetic, intense electron beam to produce a semiconductor plasma, which in turn deflects counter-colliding laser light having 1 μm wavelength. An electron beam of sub-nC charge sufficiently induces the needed electron number density gradient of 1 × 1020 cm−3 per tens of μm length at the interaction point. Demonstration during an inverse Compton scattering experiment by a counter-colliding electron beam of 300 pC and 70 MeV with an Nd: YAG laser at a wavelength of 1 μm is reported.

1.
W. P.
Leemans
,
R. W.
Schoenlein
,
P.
Volfbeyn
,
A. H.
Chin
,
T. E.
Glover
,
P.
Balling
,
M.
Zolotorev
,
K. J.
Kim
,
S.
Chattopadhyay
, and
C. V.
Shank
,
Phys. Rev. Lett.
77
,
4182
(
1996
).
2.
X.
Yan
,
A. M.
MacLeod
,
W. A.
Gillespie
,
G. M. H.
Knippels
,
D.
Oepts
,
A. F. G.
van der Meer
, and
W.
Seidel
, “
Subpicosecond electro-optic measurement of relativistic electron pulses
,”
Phys. Rev. Lett.
85
,
3404
(
2000
).
3.
A. L.
Cavalieri
et al, “
Clocking femtosecond x rays
,”
Phys. Rev. Lett.
94
,
114801
(
2005
).
4.
G.
Berden
,
S. P.
Jamison
,
A. M.
MacLeod
,
W. A.
Gillespie
,
B.
Redlich
, and
A. F. G.
van der Meer
, “
Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles
,”
Phys. Rev. Lett.
93
,
114802
(
2004
).
5.
C. M.
Scoby
,
P.
Musumeci
,
J. T.
Moody
, and
M. S.
Gutierrez
, “
Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction
,”
Phys. Rev. ST Accel. Beams
13
,
022801
(
2010
).
6.
A.
Deng
,
O. S.
Karger
, and
B.
Hidding
, “
Generation and acceleration of electron bunches from a plasma photocathode
,”
Nat. Phys.
15
,
1156
1160
(
2019
).
7.
P. B.
Corkum
,
A. J.
Alcock
, and
K. E.
Leopold
, “
Electron-beam-controlled transmission of 10-μm radiation in semiconductors
,”
J. Appl. Phys.
50
,
3079
(
1979
).
8.
I. V.
Pogorelsky
et al, “
Demonstration of 8 × 1018 photons/second peaked at 1.8
Å in a relativistic Thomson scattering experiment
,”
Phys. Rev. ST Accel. Beams
3
,
090702
(
2000
).
9.
S. Y.
Tochitsky
,
R.
Narang
,
C. V.
Filip
et al, “
Experiments on laser driven beatwave acceleration in a ponderomotively formed plasma channel
,”
Phys. Plasmas
11
,
2875
(
2004
).
10.
A.
Ovodenko
et al, “
High duty cycle inverse Compton scattering x-ray source
,”
Appl. Phys. Lett.
109
,
253504
(
2016
).
11.
Y.
Sakai
et al, “
Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime
,”
Phys. Rev. Accel. Beams
20
,
060701
(
2017
).
12.
J.
Duris
et al, “
High-quality electron beams from a helical inverse free-electron laser accelerator
,”
Nat. Commun.
5
,
4928
(
2014
).
13.
W.
Shockley
, “
Problems related to p-n junctions in silicon
,”
Solid-State Electron.
2
,
35
(
1961
).
14.
C. A.
Klein
, “
Bandgap dependence and related features of radiation ionization energies in semiconductors
,”
J. Appl. Phys.
39
,
2029
(
1968
).
15.
See https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html/ for NIST ESTAR database;
H. A.
Bethe
, “
Zur theorie des durchgangs schneller korpuskularstrahlen durch materie
,”
Ann. Phys.
5
,
325
(
1930
);
S. M.
Seltzer
and
M. J.
Berger
, “
Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
12
,
95
(
1985
).
16.
T.
Moss
,
G. J.
Burrell
, and
B.
Ellis
,
Semiconductor Optoelectronics
(
Butterworth
,
London
,
1973
), pp.
25
26
.
17.
M. A.
Green
and
M. J.
Keevers
, “
Optical properties of intrinsic silicon at 300 K
,”
Prog. Photovolt.: Res. Appl.
3
,
189
192
(
1995
).
18.
M.
Yannai
et al, “
Ultrafast electron microscopy of nanoscale charge dynamics in semiconductors
,”
ACS Nano
17
,
3645
3656
(
2023
).
19.
I.
Madan
et al, “
Charge dynamics electron microscopy: Nanoscale imaging of femtosecond plasma dynamics
,”
ACS Nano
17
,
3657
3665
(
2023
).
You do not currently have access to this content.