The inertia of trapping and detrapping of nonequilibrium charge carriers affects the electrochemical and transport properties of both bulk and nanoscopic structures in a very peculiar way. An emerging memory response with hysteresis in the current–voltage response and its eventual multiple crossing, produced by this universally available ingredient, are signatures of this process. Here, we deliver a microscopic and analytical solution for these behaviors, understood as the modulation of the topology of the current–voltage loops. Memory emergence thus becomes a characterization tool for intrinsic features that affect the electronic transport of solids such as the nature and number of trapping sites, intrinsic symmetry constraints, and natural relaxation time scales. This method is also able to reduce the seeming complexity of frequency-dependent electrochemical impedance and cyclic voltammetry observable for a variety of systems to a combination of simple microscopic ingredients.

1.
L.
Chua
, “
Memristor-the missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
2.
Y. V.
Pershin
and
M.
Di Ventra
, “
Memory effects in complex materials and nanoscale systems
,”
Adv. Phys.
60
,
145
227
(
2011
).
3.
M.
Lanza
,
A.
Sebastian
,
W. D.
Lu
,
M. L.
Gallo
,
M.-F.
Chang
,
D.
Akinwande
,
F. M.
Puglisi
,
H. N.
Alshareef
,
M.
Liu
, and
J. B.
Roldan
, “
Memristive technologies for data storage, computation, encryption, and radio-frequency communication
,”
Science
376
,
eabj9997
(
2022
).
4.
S.
Kumar
,
X.
Wang
,
J. P.
Strachan
,
Y.
Yang
, and
W. D.
Lu
, “
Dynamical memristors for higher-complexity neuromorphic computing
,”
Nat. Rev. Mater.
7
,
575
591
(
2022
).
5.
C.
Dias
,
D.
Castro
,
M.
Aroso
,
J.
Ventura
, and
P.
Aguiar
, “
Memristor-based neuromodulation device for real-time monitoring and adaptive control of neuronal populations
,”
ACS Appl. Electron. Mater.
4
,
2380
2387
(
2022
).
6.
C.
Gonzales
,
A.
Guerrero
, and
J.
Bisquert
, “
Transition from capacitive to inductive hysteresis: A neuron-style model to correlate I–V curves to impedances of metal halide perovskites
,”
J. Phys. Chem. C
126
,
13560
13578
(
2022
).
7.
K.
MacVittie
and
E.
Katz
, “
Electrochemical system with memimpedance properties
,”
J. Phys. Chem. C
117
,
24943
24947
(
2013
).
8.
D.
Priyadarshani
,
D.
Choudhury
,
M. E.
Joy
,
A.
Kottantharayil
, and
M.
Neergat
, “
Electrochemical investigation of Si of various dopant concentrations at negative overpotentials in aqueous electrolyte
,”
J. Phys. Chem. C
125
,
27736
27746
(
2021
).
9.
Y.
Luo
,
Y.
Zhao
,
J.
Ma
,
Y.
Huang
,
S.
Han
,
M.
Zhou
, and
H.
Lin
, “
Sandwich-like Na 2Ti 3O 7 nanosheet/Ti 3C 2 MXene composite for high-performance lithium/sodium-ion batteries
,”
J. Phys. Chem. C
126
,
18229
18237
(
2022
).
10.
F.
Messerschmitt
,
M.
Kubicek
, and
J. L. M.
Rupp
, “
How does moisture affect the physical property of memristance for anionic–electronic resistive switching memories?
,”
Adv. Funct. Mater.
25
,
5117
5125
(
2015
).
11.
S.
Wang
,
J.
Zhang
,
O.
Gharbi
,
V.
Vivier
,
M.
Gao
, and
M. E.
Orazem
, “
Electrochemical impedance spectroscopy
,”
Nature Reviews Methods Primers
1
,
41
(
2021
).
12.
R.
Waser
, “
Redox-based resistive switching memories
,”
J. Nanosci. Nanotechnol.
12
,
7628
7640
(
2012
).
13.
J.
Liu
,
F.
Zeng
,
J.
Yin
,
Y.
Sun
,
Q.
Wan
,
S.
Yin
,
Y.
Wang
, and
F.
Pan
, “
Implementing a type of synaptic coupling between excitatory and inhibitory cells by using Pt/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/HfO x/Pt memristive structure
,”
J. Phys. Chem. C
124
,
4843
4851
(
2020
).
14.
L.
Wu
,
H.
Liu
,
J.
Lin
, and
S.
Wang
, “
Volatile and nonvolatile memory operations implemented in a Pt/HfO 2/Ti memristor
,”
IEEE Trans. Electron Devices
68
,
1622
1626
(
2021
).
15.
L.
Martínez
,
O.
Ocampo
,
Y.
Kumar
, and
V.
Agarwal
, “
ZnO-porous silicon nanocomposite for possible memristive device fabrication
,”
Nanoscale Res. Lett.
9
,
437
(
2014
).
16.
M.
Kubicek
,
R.
Schmitt
,
F.
Messerschmitt
, and
J. L. M.
Rupp
, “
Uncovering two competing switching mechanisms for epitaxial and ultrathin strontium titanate-based resistive switching bits
,”
ACS Nano
9
,
10737
10748
(
2015
).
17.
A.
Chiolerio
,
I.
Roppolo
,
K.
Bejtka
,
A.
Asvarov
, and
C. F.
Pirri
, “
Resistive hysteresis in flexible nanocomposites and colloidal suspensions: Interfacial coupling mechanism unveiled
,”
RSC Adv.
6
,
56661
56667
(
2016
).
18.
G. U.
Kamble
,
N. P.
Shetake
,
S. D.
Yadav
,
A. M.
Teli
,
D. S.
Patil
,
S. A.
Pawar
,
M. M.
Karanjkar
,
P. S.
Patil
,
J. C.
Shin
,
M. K.
Orlowski
,
R. K.
Kamat
, and
T. D.
Dongale
, “
Coexistence of filamentary and homogeneous resistive switching with memristive and meminductive memory effects in Al/MnO 2/SS thin film metal–insulator–metal device
,”
Int. Nano Lett.
8
,
263
285
(
2018
).
19.
M.
Berruet
,
J. C.
Pérez-Martínez
,
B.
Romero
,
C.
Gonzales
,
A. M.
Al-Mayouf
,
A.
Guerrero
, and
J.
Bisquert
, “
Physical model for the current–voltage hysteresis and impedance of halide perovskite memristors
,”
ACS Energy Lett.
7
,
1214
1222
(
2022
).
20.
T. W.
Hickmott
, “
Low-frequency negative resistance in thin anodic oxide films
,”
J. Appl. Phys.
33
,
2669
2682
(
1962
).
21.
J. G.
Simmons
and
R. R.
Verderber
, “
New conduction and reversible memory phenomena in thin insulating films
,”
Proc. R. Soc. Lond. A
301
,
77
102
(
1967
).
22.
F.
Argall
, “
Switching phenomena in titanium oxide thin films
,”
Solid-State Electron.
11
,
535
541
(
1968
).
23.
R. S. W.
Silva
,
F.
Hartmann
, and
V.
Lopez-Richard
, “
The ubiquitous memristive response in solids
,”
IEEE Trans. Electron Devices
69
,
1
6
(
2022
).
24.
A. B.
de Paiva
,
R. S.
Wengenroth Silva
,
M. P. F.
de Godoy
,
L. M.
Bolaños Vargas
,
M. L.
Peres
,
D. A. W.
Soares
, and
V.
Lopez-Richard
, “
Temperature, detriment, or advantage for memory emergence: The case of ZnO
,”
J. Chem. Phys.
157
,
014704
(
2022
).
25.
A.
Borys
and
Z.
Zakrzewski
, “
Use of phasors in nonlinear analysis
,”
Int. J. Electron. Telecommun.
59
,
219
228
(
2013
).
26.
Z.
Guo
,
H. H. C.
Iu
,
G.
Si
,
X.
Xu
,
B. O.
Oresanya
, and
Y.
Bie
, “
A phasor analysis method for charge-controlled memory elements
,”
Int. J. Bifurc. Chaos
30
,
2030041
(
2020
).
27.
V. L.
Bonch-Bruevich
and
S. G.
Kalashnikov
, “VI—Effects at contacts,” in The Physics of Semiconductors—Russian Ed. (Nauka, Moscow, 1977), pp. 205–242.
28.
J. M.
Rubi
and
S.
Kjelstrup
, “
Mesoscopic nonequilibrium thermodynamics gives the same thermodynamic basis to Butler-Volmer and Nernst equations
,”
J. Phys. Chem. B
107
,
13471
13477
(
2003
).
29.
J.
Bisquert
,
G.
Garcia-Belmonte
,
Á.
Pitarch
, and
H. J.
Bolink
, “
Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes
,”
Chem. Phys. Lett.
422
,
184
191
(
2006
).
30.
A. K.
Yadav
,
K. X.
Nguyen
,
Z.
Hong
,
P.
García-Fernández
,
P.
Aguado-Puente
,
C. T.
Nelson
,
S.
Das
,
B.
Prasad
,
D.
Kwon
,
S.
Cheema
,
A. I.
Khan
,
C.
Hu
,
J.
Íñiguez
,
J.
Junquera
,
L.-Q.
Chen
,
D. A.
Muller
,
R.
Ramesh
, and
S.
Salahuddin
, “
Spatially resolved steady-state negative capacitance
,”
Nature
565
,
468
471
(
2019
).
31.
L.
Munoz-Diaz
,
A. J.
Rosa
,
A.
Bou
,
R. S.
Sánchez
,
B.
Romero
,
R. A.
John
,
M. V.
Kovalenko
,
A.
Guerrero
, and
J.
Bisquert
, “
Inductive and capacitive hysteresis of halide perovskite solar cells and memristors under illumination
,”
Frontiers in Energy Research
10
,
914115
(
2022
).
32.
M.
Ershov
,
H.
Liu
,
L.
Li
,
M.
Buchanan
,
Z.
Wasilewski
, and
A.
Jonscher
, “
Negative capacitance effect in semiconductor devices
,”
IEEE Trans. Electron Devices
45
,
2196
2206
(
1998
).
33.
W.
Román Acevedo
,
M. H.
Aguirre
,
C.
Ferreyra
,
M. J.
Sánchez
,
M.
Rengifo
,
C. A. M.
van den Bosch
,
A.
Aguadero
,
B.
Noheda
, and
D.
Rubi
, “
Optimization of the multi-mem response of topotactic redox La 1 / 2Sr 1 / 2Mn 1 / 2Co 1 / 2O 3 x
,”
APL Mater.
10
,
011111
(
2022
).
34.
A.
Bou
,
A.
Pockett
,
D.
Raptis
,
T.
Watson
,
M. J.
Carnie
, and
J.
Bisquert
, “
Beyond impedance spectroscopy of perovskite solar cells: Insights from the spectral correlation of the electrooptical frequency techniques
,”
J. Phys. Chem. Lett.
11
,
8654
8659
(
2020
).
35.
S. M.
Joshi
,
N.
Xia
,
Y.
Berta
,
Y.
Ding
,
R. A.
Gerhardt
,
E.
Woods
, and
M.
Tian
, “
Detection of plasmonic behavior in colloidal indium tin oxide films by impedance spectroscopy
,”
MRS Commun.
10
,
278
285
(
2020
).
36.
M.
Hoffmann
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Progress and future prospects of negative capacitance electronics: A materials perspective
,”
APL Mater.
9
,
020902
(
2021
).
37.
P.
Srivastava
,
R.
Kumar
,
H.
Ronchiya
, and
M.
Bag
, “
Intensity modulated photocurrent spectroscopy to investigate hidden kinetics at hybrid perovskite–electrolyte interface
,”
Sci. Rep.
12
,
14212
(
2022
).
38.
F.
Ebadi
,
N.
Taghavinia
,
R.
Mohammadpour
,
A.
Hagfeldt
, and
W.
Tress
, “
Origin of apparent light-enhanced and negative capacitance in perovskite solar cells
,”
Nat. Commun.
10
,
1574
(
2019
).
You do not currently have access to this content.