The mechanism of face-centered-cubic (FCC)-Al formation at an L12-Al3Sc/liquid-Al interface was investigated on the basis of interfacial structure and misfit strains, by using ab initio molecular dynamics (AIMD). These simulations were performed using Born–Oppenheimer dynamics, where pressure and temperature was controlled using a Parrinello–Rahman barostat and Langevin thermostat, respectively. Through this approach, we compared the relative stability of (001)Al3Sc/liquid-Al and (111)Al3Sc/liquid-Al interfaces and examined their effect on the heterogeneous nucleation of FCC-Al. Enhanced interfacial bonding along 001Al3Sc stabilized the (001)Al3Sc/liquid-Al, and formed in-liquid ordered layer resembling (002)FCC. Subsequently, the (001)Al3Sc/liquid-Al interface was subjected to stepwise cooling from 1450 to 950 K. The (002)-ordered layer was found to promote layer-by-layer epitaxial growth of FCC-coordinated regions to 25% fraction. During cooling, the resulting misfit strains—at (001)Al3Sc/(002)-ordered layer and (001)Al3Sc/(002)FCCAl interfaces—ranged from 7.4 to 0.5% within 1450–950 K. The magnitude of such misfit strains reduced significantly between 1250 and 950 K, and this trend coincided with a sharp increase in FCC coordination. Thus, AIMD simulations revealed heteroepitaxial formation of FCC-Al on the (001) faces of intermetallic Al3Sc, and that this mechanism is closely associated with a reduction in misfit strains. Our findings motivate the search for new elements that will stabilize potent L12-like structures and produce grain-refinement in Al-based alloys.

1.
R. E.
Reed-Hill
,
R.
Abbaschian
, and
R.
Abbaschian
,
Physical Metallurgy Principles
(
Van Nostrand
,
New York
,
1973
), Vol. 17.
2.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys (Revised Reprint)
(
CRC Press
,
2009
).
3.
D. L.
Huston
,
R. S.
Bottrill
,
R. A.
Creelman
,
K.
Zaw
,
T. R.
Ramsden
,
S. W.
Rand
,
J. B.
Gemmell
,
W.
Jablonski
,
S.
Sie
, and
R. R.
Large
, “
Geologic and geochemical controls on the mineralogy and grain size of gold-bearing phases, Eastern Australian volcanic-hosted massive sulfide deposits
,”
Econ. Geol.
87
(
3
),
542
563
(
1992
).
4.
B. A.
Wills
and
J.
Finch
,
Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery
(
Butterworth-Heinemann
,
2015
).
5.
P.
Li
and
A. E.
Boudreau
, “
Vapor transport of silver and gold in basaltic lava flows
,”
Geology
47
(
9
),
877
880
(
2019
).
6.
A.
Norman
,
P.
Prangnell
, and
R.
McEwen
, “
The solidification behaviour of dilute aluminium–scandium alloys
,”
Acta Mater.
46
(
16
),
5715
5732
(
1998
).
7.
R.
Banerjee
,
P. C.
Collins
, and
H. L.
Fraser
, “
Laser deposition of in situ Ti–TiB composites
,”
Adv. Eng. Mater.
4
(
11
),
847
851
(
2002
).
8.
S.
Costa
,
H.
Puga
,
J.
Barbosa
, and
A.
Pinto
, “
The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys
,”
Mater. Des.
42
,
347
352
(
2012
).
9.
Y. F.
Yang
,
M.
Yan
,
S.
Luo
,
G.
Schaffer
, and
M.
Qian
, “
Modification of the α-Ti laths to near equiaxed α-Ti grains in as-sintered titanium and titanium alloys by a small addition of boron
,”
J. Alloys Compd.
579
,
553
557
(
2013
).
10.
A. B.
Spierings
,
K.
Dawson
,
T.
Heeling
,
P. J.
Uggowitzer
,
R.
Schäublin
,
F.
Palm
, and
K.
Wegener
, “
Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting
,”
Mater. Des.
115
,
52
63
(
2017
).
11.
S.
Mantri
,
T.
Alam
,
D.
Choudhuri
,
C.
Yannetta
,
C.
Mikler
,
P.
Collins
, and
R.
Banerjee
, “
The effect of boron on the grain size and texture in additively manufactured β-Ti alloys
,”
J. Mater. Sci.
52
(
20
),
12455
12466
(
2017
).
12.
K. V.
Yang
,
Y.
Shi
,
F.
Palm
,
X.
Wu
, and
P.
Rometsch
, “
Columnar to equiaxed transition in Al-Mg (-Sc)-Zr alloys produced by selective laser melting
,”
Scr. Mater.
145
,
113
117
(
2018
).
13.
Z.
Fan
, “
An epitaxial model for heterogeneous nucleation on potent substrates
,”
Metall. Mater. Trans. A
44
(
3
),
1409
1418
(
2013
).
14.
J.
Xian
,
S.
Belyakov
,
T.
Britton
, and
C.
Gourlay
, “
Heterogeneous nucleation of Cu6Sn5 in Sn–Cu–Al solders
,”
J. Alloys Compd.
619
,
345
355
(
2015
).
15.
S. H.
Oh
,
Y.
Kauffmann
,
C.
Scheu
,
W. D.
Kaplan
, and
M.
Ruhle
, “
Ordered liquid aluminum at the interface with sapphire
,”
Science
310
(
5748
),
661
663
(
2005
).
16.
F.
Podmaniczky
,
G. I.
Tóth
,
G.
Tegze
, and
L.
Gránásy
, “
Recent developments in modeling heteroepitaxy/heterogeneous nucleation by dynamical density functional theory
,”
Metall. Mater. Trans. A
46
(
11
),
4908
4920
(
2015
).
17.
Y.
Harada
and
D.
Dunand
, “
Thermal expansion of Al3Sc and Al3 (Sc0.75X0.25)
,”
Scr. Mater.
48
(
3
),
219
222
(
2003
).
18.
L.
Wang
,
L.
Yang
,
D.
Zhang
,
M.
Xia
,
Y.
Wang
, and
J.
Li
, “
The role of lattice misfit on heterogeneous nucleation of pure aluminum
,”
Metall. Mater. Trans. A
47
(
10
),
5012
5022
(
2016
).
19.
C. B.
Carter
and
D. B.
Williams
,
Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry
(
Springer
,
2016
).
20.
C.
Fang
and
Z.
Fan
, “
Prenucleation at the interface between MgO and liquid magnesium: An ab initio molecular dynamics study
,”
Metall. Mater. Trans. A
51
(
2
),
788
797
(
2020
).
21.
C.
Fang
and
Z.
Fan
, “
Atomic ordering at the liquid-Al/MgAl2O4 interfaces from ab initio molecular dynamics simulations
,”
Metall. Mater. Trans. A
51
(
12
),
6318
6326
(
2020
).
22.
D.
Choudhuri
,
B. S.
Majumdar
, and
H.
Wilkinson
, “
Investigation of in-liquid ordering mediated transformations in Al-Sc via ab initio molecular dynamics and unsupervised learning
,”
Phys. Rev. Mater.
6
(
10
),
103406
(
2022
).
23.
J.
Murray
, “
The Al-Sc (aluminum–scandium) system
,”
J. Phase Equilibria Diffus.
19
(
4
),
380
(
1998
).
24.
B. J.
Jesson
and
P. A.
Madden
, “
Structure and dynamics at the aluminum solid–liquid interface: An ab initio simulation
,”
J. Chem. Phys.
113
(
14
),
5935
5946
(
2000
).
25.
J.
Wang
,
A.
Horsfield
,
U.
Schwingenschlögl
, and
P. D.
Lee
, “
Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study
,”
Phys. Rev. B
82
(
18
),
184203
(
2010
).
26.
H.
Zhang
,
Y.
Han
,
Y.
Dai
,
S.
Lu
,
J.
Wang
,
J.
Zhang
,
D.
Shu
, and
B.
Sun
, “
An ab initio study on the electronic structures of the solid/liquid interface between TiB2 (0 0 0 1) surface and Al melts
,”
J. Alloys Compd.
615
,
863
867
(
2014
).
27.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
2009
).
28.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
29.
M.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
2010
).
30.
M.
Mendelev
,
F.
Zhang
,
Z.
Ye
,
Y.
Sun
,
M.
Nguyen
,
S.
Wilson
,
C.
Wang
, and
K.
Ho
, “
Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy
,”
Modell. Simul. Mater. Sci. Eng.
23
(
4
),
045013
(
2015
).
31.
A.
Groß
, “
Reactions at surfaces studied by ab initio dynamics calculations
,”
Surf. Sci. Rep.
32
(
8
),
291
340
(
1998
).
32.
H.
Hu
and
W.
Yang
, “
Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods
,”
Annu. Rev. Phys. Chem.
59
,
573
601
(
2008
).
33.
J.
Blumberger
and
M.
Sprik
, “
Ab initio molecular dynamics simulation of the aqueous Ru2+/Ru3+ redox reaction: The Marcus perspective
,”
J. Phys. Chem. B
109
(
14
),
6793
6804
(
2005
).
34.
T.
Wang
,
F.
Zhang
,
L.
Yang
,
X.
Fang
,
S.
Zhou
,
M.
Kramer
,
C.
Wang
,
K.
Ho
, and
R.
Napolitano
, “
A computational study of diffusion in a glass-forming metallic liquid
,”
Sci. Rep.
5
(
1
),
1
9
(
2015
).
35.
R. M.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
2020
).
36.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
(
1
),
558
(
1993
).
37.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
(
20
),
14251
(
1994
).
38.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
(
1996
).
39.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
(
1999
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
(
7
),
1396
(
1997
).
42.
M.
Parrinello
and
A.
Rahman
, “
Crystal structure and pair potentials: A molecular-dynamics study
,”
Phys. Rev. Lett.
45
(
14
),
1196
(
1980
).
43.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
(
12
),
7182
7190
(
1981
).
44.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
45.
F.
Cherne
,
M.
Baskes
,
R.
Schwarz
,
S.
Srinivasan
, and
W.
Klein
, “
Non-classical nucleation in supercooled nickel
,”
Modell. Simul. Mater. Sci. Eng.
12
(
6
),
1063
(
2004
).
46.
F.
Cherne Iii
and
P.
Deymier
, “
Calculation of the transport properties of liquid aluminum with equilibrium and non-equilibrium molecular dynamics
,”
Scr. Mater.
45
(
8
),
985
991
(
2001
).
47.
D.
Choudhuri
,
R.
Banerjee
, and
S.
Srinivasan
, “
Uniaxial deformation of face-centered-cubic (Ni)-ordered B2 (NiAl) bicrystals: Atomistic mechanisms near a Kurdjumov–Sachs interface
,”
J. Mater. Sci.
53
,
5684
5695
(
2018
).
48.
A.
Mahata
,
M. A.
Zaeem
, and
M. I.
Baskes
, “
Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations
,”
Modell. Simul. Mater. Sci. Eng.
26
(
2
),
025007
(
2018
).
49.
D.
Choudhuri
,
B.
Gwalani
,
S.
Gorsse
,
M.
Komarasamy
,
S. A.
Mantri
,
S. G.
Srinivasan
,
R. S.
Mishra
, and
R.
Banerjee
, “
Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds
,”
Acta Mater.
165
,
420
430
(
2019
).
50.
D.
Choudhuri
and
A.
CampBell
, “
Interface dominated deformation mechanisms in two-phase fcc/B2 nanostructures: Nishiyama–Wasserman vs. Kurdjumov–Sachs interfaces
,”
Comput. Mater. Sci.
177
,
109577
(
2020
).
51.
D.
Choudhuri
,
S. G.
Srinivasan
, and
R. S.
Mishra
, “
Deformation of lamellar FCC-B2 nanostructures containing Kurdjumov–Sachs interfaces: Relation between interfacial structure and plasticity
,”
Int. J. Plast.
125
,
191
209
(
2020
).
52.
D.
Choudhuri
and
B. S.
Majumdar
, “
Structural changes during crystallization and vitrification of dilute fcc-based binary alloys
,”
Materialia
12
,
100816
(
2020
).
53.
D.
Choudhuri
,
S.
Matteson
, and
R.
Knox
, “
Nucleation of coupled body-centered-cubic and closed-packed structures in liquid Ni-Cr alloys
,”
Scr. Mater.
199
,
113857
(
2021
).
54.
P. M.
Larsen
,
S.
Schmidt
, and
J.
Schiøtz
, “
Robust structural identification via polyhedral template matching
,”
Modell. Simul. Mater. Sci. Eng.
24
(
5
),
055007
(
2016
).
55.
J. M.
Haile
,
Molecular Dynamics Simulation: Elementary Methods
(
John Wiley & Sons, Inc.
,
1992
).
56.
D.
Buta
,
M.
Asta
, and
J. J.
Hoyt
, “
Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface
,”
Phys. Rev. E
78
(
3
),
031605
(
2008
).
57.
L.
Wang
and
J. J.
Hoyt
, “
Layering misalignment and negative temperature dependence of interfacial free energy of B2-liquid interfaces in a glass forming system
,”
Acta Mater.
219
,
117259
(
2021
).
58.
K.
Momma
and
F.
Izumi
, “
Vesta: A three-dimensional visualization system for electronic and structural analysis
,”
J. Appl. Crystallogr.
41
(
3
),
653
658
(
2008
).
59.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
(
1
),
015012
(
2010
).
60.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
, “
Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations
,”
Chem. Rev.
116
(
12
),
7078
7116
(
2016
).
61.
D.
Choudhuri
,
Y.
Zheng
,
T.
Alam
,
R.
Shi
,
M.
Hendrickson
,
S.
Banerjee
,
Y.
Wang
,
S.
Srinivasan
,
H.
Fraser
, and
R.
Banerjee
, “
Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy
,”
Acta Mater.
130
,
215
228
(
2017
).
62.
S.
Ogata
,
J.
Li
, and
S.
Yip
, “
Ideal pure shear strength of aluminum and copper
,”
Science
298
(
5594
),
807
811
(
2002
).
63.
C.
Jiang
and
S. G.
Srinivasan
, “
Unexpected strain-stiffening in crystalline solids
,”
Nature
496
(
7445
),
339
342
(
2013
).
64.
W. Y.
Wang
,
S. L.
Shang
,
Y.
Wang
,
Z.-G.
Mei
,
K. A.
Darling
,
L. J.
Kecskes
,
S. N.
Mathaudhu
,
X. D.
Hui
, and
Z.-K.
Liu
, “
Effects of alloying elements on stacking fault energies and electronic structures of binary Mg alloys: A first-principles study
,”
Mater. Res. Lett.
2
(
1
),
29
36
(
2014
).
65.
S.
Shang
,
W.
Wang
,
B.
Zhou
,
Y.
Wang
,
K.
Darling
,
L.
Kecskes
,
S.
Mathaudhu
, and
Z.-K.
Liu
, “
Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation
,”
Acta Mater.
67
,
168
180
(
2014
).
66.
W.
Wang
,
J.
Han
,
H.
Fang
,
J.
Wang
,
Y.
Liang
,
S.
Shang
,
Y.
Wang
,
X.
Liu
,
L.
Kecskes
,
S.
Mathaudhu
,
X.
Hui
, and
Z. K.
Liu
, “
Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study
,”
Acta Mater.
97
,
75
85
(
2015
).
67.
D.
Choudhuri
,
R.
Banerjee
, and
S.
Srinivasan
, “
Interfacial structures and energetics of the strengthening precipitate phase in creep-resistant Mg-Nd-based alloys
,”
Sci. Rep.
7
(
1
),
1
8
(
2017
).
68.
D.
Choudhuri
,
S. G.
Srinivasan
,
M. A.
Gibson
,
Y.
Zheng
,
D. L.
Jaeger
,
H. L.
Fraser
, and
R.
Banerjee
, “
Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening
,”
Nat. Commun.
8
(
1
),
1
9
(
2017
).
69.
D.
Choudhuri
,
S.
Srinivasan
,
M. A.
Gibson
, and
R.
Banerjee
, “Bonding environments in a creep–resistant Mg–Re–Zn alloy”, in Magnesium Technology 2017 (Springer, 2017), pp. 471–475.
70.
D.
Choudhuri
, “
Local structure and bonding environment of intermetallic β1 precipitate phase nucleus in binary Mg-Nd
,”
Comput. Mater. Sci.
187
,
110111
(
2021
).
71.
P.
Paranjape
,
S.
Srinivasan
, and
D.
Choudhuri
, “
Correlation between bonding, vacancy migration mechanisms, and creep in model binary and ternary hcp-Mg solid solutions
,”
J. Appl. Phys.
128
(
14
),
145103
(
2020
).
72.
T. L.
Hill
,
An Introduction to Statistical Thermodynamics
(
Courier Corporation
,
1986
).
73.
R.
Freitas
and
E. J.
Reed
, “
Uncovering the effects of interface-induced ordering of liquid on crystal growth using machine learning
,”
Nat. Commun.
11
(
1
),
1
10
(
2020
).
74.
D.
Frenkel
,
B.
Smit
, and
M. A.
Ratner
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press, San Diego
,
1996
), Vol. 2.
75.
T.
Quested
and
A.
Greer
, “
Athermal heterogeneous nucleation of solidification
,”
Acta Mater.
53
(
9
),
2683
2692
(
2005
).
76.
M.
Easton
,
M.
Qian
,
A.
Prasad
, and
D.
StJohn
, “
Recent advances in grain refinement of light metals and alloys
,”
Curr. Opin. Solid State Mater. Sci.
20
(
1
),
13
24
(
2016
).
77.
Y.
Shibuta
,
Y.
Watanabe
, and
T.
Suzuki
, “
Growth and melting of nanoparticles in liquid iron: A molecular dynamics study
,”
Chem. Phys. Lett.
475
(
4–6
),
264
268
(
2009
).
78.
Y.
Watanabe
,
Y.
Shibuta
, and
T.
Suzuki
, “
A molecular dynamics study of thermodynamic and kinetic properties of solid–liquid interface for bcc iron
,”
ISIJ Int.
50
(
8
),
1158
1164
(
2010
).
79.
R.
Hashimoto
,
Y.
Shibuta
, and
T.
Suzuki
, “
Estimation of solid-liquid interfacial energy from Gibbs–Thompson effect: A molecular dynamics study
,”
ISIJ Int.
51
(
10
),
1664
1667
(
2011
).
80.
X.-M.
Bai
and
M.
Li
, “
Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach
,”
J. Chem. Phys.
124
(
12
),
124707
(
2006
).
81.
P.
Schumacher
and
A.
Greer
, “
Enhanced heterogeneous nucleation of α-Al in amorphous aluminium alloys
,”
Mater. Sci. Eng.: A
181
,
1335
1339
(
1994
).
82.
S. B.
Park
, “
Heterogeneous nucleation models to predict grain size in solidification
,”
Prog. Mater. Sci.
123
,
100822
(
2022
).

Supplementary Material

You do not currently have access to this content.