Recent advances in the development of surface plasmons (SPs) enhanced LED have provided a great opportunity to enhance either the internal quantum efficiency (IQE) or the spontaneous emission rate (SE) by employing specific metal structures. However, it is still challenging to simultaneously achieve high IQE and Purcell factor (Fp), which demonstrates the SE enhancement, without sacrificing the electrical performance of LEDs. Herein, we designed and investigated a conic metal structure applied to LEDs by comprehensively considering the electrical, optical, and data transmission performance of devices. Conic structures with various heights were implemented to investigate the variation trends of IQE and Fp with the structure design, accompanied by the planar structures as references. A more than five times increase in IQE and almost five times increase in Fp were demonstrated experimentally even with a coupling distance of 100 nm, by employing this conic structure. The theoretical analysis was verified by the experimental results and revealed the mechanism of high Fp and IQE toward high SP–photon coupling efficiency and initial IQE. This study provides a universal strategy to enhance the performance of luminous efficiency and modulation speed of LEDs without sacrificing electrical properties, making them viable for the integration of lighting, display, and communication.

1.
S. R.
Lee
,
J. C.
Lo
,
M.
Tao
, and
H.
Ye
,
From LED to Solid State Lighting: Principles, Materials, Packaging, Characterization, and Applications
(
John Wiley & Sons
,
2021
).
2.
S.
Hang
,
C.-M.
Chuang
,
Y.
Zhang
,
C.
Chu
,
K.
Tian
,
Q.
Zheng
,
T.
Wu
,
Z.
Liu
,
Z.-H.
Zhang
,
Q.
Li
, and
H.-C.
Kuo
, “
A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs
,”
J. Phys. D: Appl. Phys.
54
,
153002
(
2021
).
3.
Z.
Lv
,
G.
He
,
C.
Qiu
, and
Z.
Liu
, “
Investigation of underwater wireless optical communications links with surface currents and tides for oceanic signal transmission
,”
IEEE Photonics J.
3
,
73000508
73000514
(
2021
).
4.
L.
Ma
,
P.
Yu
,
W.
Wang
,
H.-C.
Kuo
,
A. O.
Govorov
,
S.
Sun
, and
Z. L.
Wang
, “
Nanoantenna-enhanced light-emitting diodes: Fundamental and recent progress
,”
Photonics Res.
15
,
2000367
(
2021
).
5.
H.
Li
,
M. S.
Wong
,
M.
Khoury
,
B.
Bonef
,
H.
Zhang
,
Y.
Chow
,
P.
Li
,
J.
Kearns
,
A. A.
Taylor
,
P.
De Mierry
,
Z.
Hassan
,
S.
Nakamura
, and
S.
Denbaars
, “
Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template
,”
Opt. Express
27
,
24154
24160
(
2019
).
6.
D.
Lu
,
H
Qian
,
K.
Wang
,
H.
Shen
,
F.
Wei
,
Y.
Jiang
,
E. E.
Fullerton
,
P. K. L.
Yu
, and
Z.
Liu
, “
Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright green InGaN quantum wells
,”
Adv. Mater.
30
,
1706411
(
2018
).
7.
A.
Rashidi
,
M.
Monavarian
,
A.
Aragon
,
A.
Rishinaramangalam
, and
D.
Feezell
, “
Nonpolar m-Plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth
,”
IEEE Electr. Device L.
39
, 520–523 (
2018
).
8.
J.
Zhang
,
M.
Jiang
,
L.
Bian
,
D.
Wu
,
H.
Qin
,
W.
Yang
,
Y.
Zhao
,
Y.
Wu
,
M.
Zhou
, and
S.
Lu
, “
A self-powered transparent photodetector based on detached vertical (In,Ga)N nanowires with 360 degrees omnidirectional detection for underwater wireless optical communication
,”
Nanomaterials
11
,
2959
(
2021
).
9.
M.-K.
Kwon
,
J.-Y.
Kim
,
B.-H.
Kim
,
I.-K.
Park
,
C.-Y.
Cho
,
C.-C.
Byeon
, and
S.-J.
Park
, “
Surface-Plasmon-Enhanced Light-Emitting Diodes
,”
Adv. Mater.
20
,
1253
(
2008
).
10.
B.
Wang
,
P.
Yu
,
W.
Wang
,
X.
Zhang
,
H.-C.
Kuo
,
H.
Xu
, and
Z. M.
Wang
, “
High-Q plasmonic resonances: Fundamentals and applications
,”
Adv. Opt. Mater.
9
,
2001520
(
2021
).
11.
K.
Okamoto
,
I.
Niki
,
A.
Shvartser
,
Y.
Narukawa
,
T.
Mukai
, and
A. J.
Scherer
, “
Surface-plasmon-enhanced light emitters based on InGaN quantum wells
,”
Nat. Mater.
3
,
601
605
(
2004
).
12.
Y.-F.
Yao
,
C.-H.
Lin
,
C.-Y.
Chao
,
W.-Y.
Chang
,
C.-Y.
Su
,
C.-G.
Tu
,
Y.-W.
Kiang
, and
C.
Yang
, “
Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries
,”
Opt. Express
26
,
9205
9219
(
2018
).
13.
J. M.
Pitarke
,
V. M.
Silkin
,
E. V.
Chulkov
, and
P. M.
Echenique
, “
Theory of surface plasmons and surface-plasmon polaritons
,”
Rep. Prog. Phys.
70
,
1
(
2007
).
14.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2015
).
15.
C. Y.
Cho
,
S. J.
Lee
,
J. H.
Song
,
S. H.
Hong
,
S. M.
Lee
,
Y. H.
Cho
, and
S. J.
Park
, “
Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN
,”
Appl. Phys. Lett.
99
,
041107
(
2011
).
16.
C. Y.
Cho
,
S. J.
Lee
,
J. H.
Song
,
S. H.
Hong
,
S. M.
Lee
,
Y. H.
Cho
, and
S. J.
Park
, “
Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles
,”
Appl. Phys. Lett.
98
,
051106
(
2011
).
17.
N.
Okada
,
N.
Morishita
,
A.
Mori
,
T.
Tsukada
,
K.
Tateishi
,
K.
Okamoto
, and
K.
Tadatomo
, “
Fabrication and evaluation of plasmonic light-emitting diodes with thin p-type layer and localized Ag particles embedded by ITO
,”
J. Appl. Phys.
121
,
153102
(
2017
).
18.
L.
Ma
,
P.
Yu
,
W.
Wang
,
H. C.
Kuo
,
A. O.
Govorov
,
S.
Sun
, and
Z.
Wang
, “
Nanoantenna-enhanced light-emitting diodes: Fundamental and recent progress
,”
Laser Photonics Rev.
15
,
2000367
(
2021
).
19.
C.-Y.
Su
,
C.-H.
Lin
,
Y.-F.
Yao
,
W.-H.
Liu
,
M.-Y.
Su
,
H.-C.
Chiang
,
M.-C.
Tsai
,
C.-G.
Tu
,
H.-T.
Chen
,
Y.-W.
Kiang
, and
C. C.
Yang
, “
Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode
,”
Opt. Express
25
,
21526
21536
(
2017
).
20.
K.
Okamoto
,
M.
Funato
,
Y.
Kawakami
, and
K. J.
Tamada
, “
High-efficiency light emission by means of exciton–surface-plasmon coupling
,”
J. Photochem. Photobiol. C
32
,
58
77
(
2017
).
21.
Z.
Liu
,
C.-H.
Lin
,
B.-R.
Hyun
,
C.-W.
Sher
,
Z.
Lv
,
B.
Luo
,
F.
Jiang
,
T.
Wu
,
C.-H.
Ho
,
H.-C.
Kuo
, and
J.-H.
He
, “
Micro-light-emitting diodes with quantum dots in display technology
,”
Light: Sci. Appl.
9
,
83
(
2020
).
22.
X.
Wang
,
Z.
Tian
,
M.
Zhang
,
Q.
Li
,
X.
Su
,
Y.
Zhang
,
P.
Hu
,
Y.
Li
, and
F.
Yun
, “
Enhanced coupling efficiency and electrical property in surface plasmon-enhanced light-emitting diodes with the tapered Ag structure
,”
Opt. Express
28
,
35708
35715
(
2020
).
23.
M.
Jones
,
J.
Nedeljkovic
,
R. J.
Ellingson
,
A. J.
Nozik
, and
G.
Rumbles
, “
Photoenhancement of luminescence in colloidal CdSe quantum Dot solutions
,”
J. Phys. Chem. B
107
,
11346
11352
(
2003
).
24.
M.
Athanasiou
,
P.
Papagiorgis
,
A.
Manoli
,
C.
Bernasconi
,
M. I.
Bodnarchuk
,
M. V.
Kovalenko
, and
G.
Itskos
, “
Efficient amplified spontaneous emission from solution-processed CsPbBr3 nanocrystal microcavities under continuous wave excitation
,”
ACS Photonics
8
,
2120
(
2021
).
25.
C.
Yang
,
A. A.
Bettiol
,
Y.
Shi
,
M.
Bosman
,
H. R.
Tan
,
W. P.
Goh
,
J. H.
Teng
, and
E. J.
Teo
, “
Fast electrical modulation in a plasmonic-enhanced V-Pit-textured, light-emitting diode
,”
Adv. Opt. Mater.
3
,
1703
1709
(
2015
).
26.
S.
Tan
,
A.
Argondizzo
,
J.
Ren
,
L.
Liu
,
J.
Zhao
, and
H.
Petek
, “
Plasmonic coupling at a metal/semiconductor interface
,”
Nat. Photonics
11
,
806
812
(
2017
).
27.
C.-H.
Lin
,
C.
Hsieh
,
C.-G.
Tu
,
Y.
Kuo
,
H.-S.
Chen
,
P.-Y.
Shih
,
C.-H.
Liao
,
Y. W.
Kiang
,
C. C.
Yang
,
C.-H.
Lai
,
G.-R.
He
,
J. H.
Yeh
, and
T.-C.
Hsu
, “
Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering
,”
Opt. Express
22
,
A842
A856
(
2014
).
28.
D.
Fattal
,
M.
Fiorentino
,
M.
Tan
,
D.
Houng
,
S. Y.
Wang
, and
R. G.
Beausoleil
, “
Design of an efficient light-emitting diode with 10 GHz modulation bandwidth
,”
Appl. Phys. Lett.
93
,
243501
(
2008
).
29.
E.
Fermi
, “
Quantum theory of radiation
,”
Rev. Mod. Phys.
4
,
87
(
1932
).
30.
H.
Reather
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
, Springer Tracts in Modern Physics Vol. 111 (
Springer
,
1988
), pp.
1
3
.
31.
M. I.
Stockman
, “
Nanofocusing of optical energy in tapered plasmonic waveguides
,”
Phys. Rev. Lett.
93
,
137404
(
2004
).
32.
H.-Y.
Ryu
,
I.-G.
Choi
,
H.-S.
Choi
, and
J.-I.
Shim
, “
Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes
,”
Appl. Phys. Express
6
,
062101
(
2013
).
33.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2006
).
34.
R.
Tellez-Limon
,
M.
Février
,
A.
Apuzzo
,
R.
Salas-Montiel
, and
S.
Blaize
, “
Numerical analysis of tip-localized surface plasmon resonances in periodic arrays of gold nanowires with triangular cross section
,”
J. Opt. Soc. Am. B
34
,
2147
2154
(
2017
).
35.
S.
D’Agostino
,
F.
Della Sala
, and
L. C.
Andreani
, “
Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation
,”
Phys. Rev. B
87
,
205413
(
2013
).
36.
H.
Wei
,
X.
Yan
,
Y.
Niu
,
Q.
Li
,
Z.
Jia
, and
H.
Xu
, “
Plasmon–exciton interactions: Spontaneous emission and strong coupling
,”
Adv. Funct. Mater.
31
,
2100889
(
2021
).
37.
S. R.
Best
, “
A low Q electrically small magnetic (TE mode) dipole
,”
IEEE Antennas Wirel. Propag. Lett.
8
,
572
575
(
2009
).
38.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer Science & Business Media
,
2007
).
39.
S.
Wedge
and
W.
Barnes
, “
Surface plasmon-polariton mediated light emission through thin metal films
,”
Opt. Express
12
,
3673
3685
(
2004
).
40.
H. M.
Gibbs
,
G.
Khitrova
, and
S. W.
Koch
, “
Exciton-polariton light-semiconductor coupling effects
,”
Nat. Photonics
5
,
273
(
2011
).
41.
J. C.
Ostrowski
,
A.
Mikhailovsky
,
D. A.
Bussian
,
M. A.
Summers
,
S. K.
Buratto
, and
G. C.
Bazan
, “
Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates
,”
Adv. Funct. Mater.
16
,
1221
1227
(
2006
).
42.
J. R.
Lakowicz
, “
Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission
,”
Anal. Biochem.
337
,
171
194
(
2005
).
43.
S.
D’Agostino
,
F.
Della Salla
, and
L. C.
Andreani
, “
Perturbations of dipole decay dynamics induced by plasmonic nano-antennas—A study within the discrete dipole approximation
,”
Nanomater. Nanotech.
5
,
5
11
(
2015
).
44.
E. D.
Haberer
,
C. H.
Chen
,
M.
Hansen
,
S.
Keller
,
S. P.
DenBaars
,
U. K.
Mishra
, and
E. L.
Hu
, “
Enhanced diffusion as a mechanism for ion-induced damage propagation in GaN
,”
J. Vac. Sci. Technol. B
19
(
3
),
603
1023
(
2001
).
You do not currently have access to this content.