Spintronic devices would greatly benefit from a noncollinear alignment between magnetizations of adjacent ferromagnetic layers for maximum performance and reliability. We demonstrate that such an alignment can be created and controlled by coupling two ferromagnetic layers across a magnetic spacer layer consisting of a nonmagnetic material, Ru, alloyed with a ferromagnetic element, Co. Changing the composition and thickness of the spacer layer enables the control of the relative angle between the magnetizations of the ferromagnetic layers between 0° and 180°. The onset of noncollinear alignment between the ferromagnetic layers coincides with the advent of magnetic order in the spacer layer. This study maps the concentration and thickness ranges of RuCo spacer layers that give rise to noncollinearity between ferromagnetic Co layers. The experimental results are successfully reproduced by simulating our structures with an atomistic model. This model assumes that Co atoms in the RuCo spacer layer have magnetic moments and that neighboring Co atoms are ferromagnetically coupled, while Co atoms separated by one or more Ru atoms are antiferromagnetically coupled.

1.
P.
Grünberg
,
R.
Schreiber
,
Y.
Pang
,
M. B.
Brodsky
, and
H.
Sowers
, “
Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers
,”
Phys. Rev. Lett.
57
,
2442
(
1986
).
2.
B.
Heinrich
,
Z.
Celinski
,
J. F.
Cochran
,
W. B.
Muir
,
J.
Rudd
,
Q. M.
Zhong
,
A. S.
Arrott
,
K.
Myrtle
, and
J.
Kirschner
, “
Ferromagnetic and antiferromagnetic exchange coupling in bcc epitaxial ultrathin Fe(001)/Cu(001)Fe(001) trilayers
,”
Phys. Rev. Lett.
64
,
673
676
(
1990
).
3.
S. S. P.
Parkin
, “
Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals
,”
Phys. Rev. Lett.
67
,
3598
(
1991
).
4.
A.
Guedes
,
M.
Mendes
,
P.
Freitas
, and
J.
Martins
, “
Study of synthetic ferrimagnet-synthetic antiferromagnet structures for magnetic sensor application
,”
J. Appl. Phys.
99
,
08B703
(
2006
).
5.
I.
Tudosa
,
J.
Katine
,
S.
Mangin
, and
E.
Fullerton
, “
Perpendicular spin-torque switching with a synthetic antiferromagnetic reference layer
,”
Appl. Phys. Lett.
96
,
212504
(
2010
).
6.
N.
Smith
,
S.
Maat
,
M.
Carey
, and
J.
Childress
, “
Coresonant enhancement of spin-torque critical currents in spin valves with a synthetic-ferrimagnet free layer
,”
Phys. Rev. Lett.
101
,
247205
(
2009
).
7.
S. S. P.
Parkin
, “
Giant magnetoresistance in magnetic nanostructures
,”
Annu. Rev. Mater. Sci.
25
,
357
388
(
1995
).
8.
E.
Abarra
,
A.
Inomata
,
H.
Sato
,
I.
Okamoto
, and
Y.
Mizoshita
, “
Longitudinal magnetic recording media with thermal stabilization layers
,”
Appl. Phys. Lett.
77
,
2581
2583
(
2000
).
9.
E.
Fullerton
,
D.
Margulies
,
M.
Schabes
,
M.
Carey
,
B.
Gurney
,
A.
Moser
,
M.
Best
,
G.
Zeltzer
,
K.
Rubin
,
H.
Rosen
, and
M.
Doerner
, “
Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording
,”
Appl. Phys. Lett.
77
,
3806
3808
(
2000
).
10.
P.
Omelchenko
,
B.
Heinrich
, and
E.
Girt
, “
Measurements of interlayer exchange coupling of Pt in Py|Pt|Py system
,”
Appl. Phys. Lett.
113
,
142401
(
2018
).
11.
Z. R.
Nunn
and
E.
Girt
, “Non-collinear coupling across RuCo and RuFe alloys,” arXiv:1901.07055 [cond-mat.mtrl-sci] (2019).
12.
Z. R.
Nunn
,
C.
Abert
,
D.
Suess
, and
E.
Girt
, “
Control of the noncollinear interlayer exchange coupling
,”
Sci. Adv.
6
,
eabd8861
(
2020
).
13.
M.
Rührig
,
R.
Schäfer
,
A.
Hubert
,
R.
Mosler
,
J. A.
Wolf
,
S.
Demokritov
, and
P.
Grünberg
, “
Domain observations on Fe-Cr-Fe layered structures: Evidence for a biquadratic coupling effect
,”
Phys. Status Solidi A
125
,
635
656
(
1991
).
14.
M. E.
Filipkowski
,
J. J.
Krebs
,
G. A.
Prinz
, and
C. J.
Gutierrez
, “
Giant near-90 coupling in epitaxial CoFe/Mn/CoFe sandwich structures
,”
Phys. Rev. Lett.
75
,
1847
1850
(
1995
).
15.
E. E.
Fullerton
and
J. R.
Childress
, “
Spintronics, magnetoresistive heads, and the emergence of the digital world
,”
Proc. IEEE
104
,
1787
1795
(
2016
).
16.
R.
Sbiaa
, “
Magnetization switching by spin-torque effect in off-aligned structure with perpendicular anisotropy
,”
J. Phys. D: Appl. Phys.
46
,
395001
(
2013
).
17.
R.
Matsumoto
,
H.
Arai
,
S.
Yuasa
, and
H.
Imamura
, “
Spin-transfer-torque switching in a spin-valve nanopillar with a conically magnetized free layer
,”
Appl. Phys. Express
8
,
063007
(
2015
).
18.
Y.
Zhou
,
C. L.
Zha
,
S.
Bonetti
,
J.
Persson
, and
J.
Åkerman
, “
Spin-torque oscillator with tilted fixed layer magnetization
,”
Appl. Phys. Lett.
92
,
262508
(
2008
).
19.
B.
Swartzendruber
and
L.
J.and Sundman
, “
The Fe-Ru (iron-ruthenium) system
,”
Bull. Alloy Phase Diagr.
4
,
155
(
1983
).
20.
P.
Franke
and
D.
Neuschütz
, Thermodynamic Properties of Inorganic Materials Compiled by SGTE,’ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology: Group IV: Physical Chemistry (Springer, 2007), Vol. 19B5.
21.
O.
Idigoras
,
U.
Palomares
,
A. K.
Suszka
,
L.
Fallarino
, and
A.
Berger
, “
Magnetic properties of room temperature grown epitaxial Co1xRux-alloy films
,”
Appl. Phys. Lett.
103
,
102410
(
2013
).
22.
B. J.
Kirby
,
L.
Fallarino
,
P.
Riego
,
B. B.
Maranville
,
C. W.
Miller
, and
A.
Berger
, “
Nanoscale magnetic localization in exchange strength modulated ferromagnets
,”
Phys. Rev. B
98
,
064404
(
2018
).
23.
J. S. S.
Gallo
,
A.
Berger
,
M.
Quintana
,
E. R.
Parra
, and
L.
Fallarino
, “
Nanoscale control of temperature operation ranges for magnetocaloric applications
,”
J. Phys. D: Appl. Phys.
54
,
304003
(
2021
).
24.
L.
Fallarino
,
M.
Quintana
,
E.
López Rojo
, and
A.
Berger
, “
Suppression of coercivity in nanoscale graded magnetic materials
,”
Phys. Rev. Appl.
16
,
034038
(
2021
).
25.
L.
Fallarino
,
E.
López Rojo
,
M.
Quintana
,
J. S.
Salcedo Gallo
,
B. J.
Kirby
, and
A.
Berger
, “
Modifying critical exponents of magnetic phase transitions via nanoscale materials design
,”
Phys. Rev. Lett.
127
,
147201
(
2021
).
26.
M. D.
Stiles
, “Interlayer exchange coupling,” in Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism, edited by J. A. C. Bland and B. Heinrich (Springer, Berlin, 2005), pp. 99–142.
27.
R.
Schäfer
, “The magnetic microstructure of nanostructured materials,” in Nanoscale Magnetic Materials and Applications, edited by J. P. Liu, E. Fullerton, O. Gutfleisch, and D. Sellmyer (Springer US, Boston, MA, 2009), pp. 275–307.
28.
R.
Schafer
,
A.
Hubert
, and
S.
Parkin
, “
Domain and domain wall observations in sputtered exchange-biased wedges
,”
IEEE Trans. Magn.
29
,
2738
2740
(
1993
).
29.
C.
Abert
,
S.
Koraltan
,
F.
Bruckner
,
F.
Slanovc
,
J.
Besler
,
P.
Omelchenko
,
E.
Girt
, and
D.
Suess
, “
Origin of noncollinear magnetization coupling across RuX layers
,”
Phys. Rev. B
106
,
054401
(
2022
).
30.
E.
Girt
and
H. J.
Richter
, “
Antiferromagnetically coupled perpendicular recording media
,”
IEEE Trans. Magn.
39
,
2306
2310
(
2003
).
31.
A.
Dinia
,
S.
Zoll
,
M.
Gester
,
D.
Stoeffler
,
J. P.
Jay
,
K.
Ounadjela
,
H. A. M.
van den Berg
, and
H.
Rakoto
, “
Interfacial polarisation effect on the interlayer couplings in Co/Rh sandwiches
,”
Eur. Phys. J. B
5
,
203
214
(
1998
).
32.
S.
Zoll
,
A.
Dinia
,
D.
Stoeffler
,
M.
Gester
,
H. A. M.
van den Berg
, and
K.
Ounadjela
, “
Preserved interfacial magnetism and giant antiferromagnetic exchange coupling in Co/Rh sandwiches
,”
EPL
39
,
323
328
(
1997
).
33.
Z. R.
Nunn
and
E.
Girt
, “Applications of non-collinearly coupled magnetic layers,” U.S. patent 10,204,671 (21 Jan 2019).
34.
S. S. P.
Parkin
,
N.
More
, and
K. P.
Roche
, “
Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr
,”
Phys. Rev. Lett.
64
,
2304
(
1990
).
35.
P. J. H.
Bloemen
,
H. W.
van Kesteren
,
H. J. M.
Swagten
, and
W. J. M.
de Jonge
, “
Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers
,”
Phys. Rev. B
50
,
13505
13514
(
1994
).
36.
A. K.
Niessen
,
F. R.
de Boer
,
R.
Boom
,
P. F.
de Châtel
,
W. C. M.
Mattens
, and
A. R.
Miedema
, “
Model predictions for the enthalpy of formation of transition metal alloys II
,”
Calphad
7
,
51
70
(
1983
).
37.
S.
Zoll
,
H. A. M.
Van den Berg
,
J. P.
Jay
,
H. J.
Elmers
,
C.
Meny
,
P.
Panissod
,
D.
Stoeffler
,
A.
Dinia
, and
K.
Ounadjela
, “
Coupling mechanism in Co/Ru sandwiches with thin spacers
,”
J. Magn. Magn. Mater.
156
,
231
232
(
1996
).
38.
C.
Eyrich
,
A.
Zamani
,
W.
Huttema
,
M.
Arora
,
D.
Harrison
,
F.
Rashidi
,
D.
Broun
,
B.
Heinrich
,
O.
Mryasov
,
M.
Ahlberg
,
O.
Karis
,
P. E.
Jönsson
,
M.
From
,
X.
Zhu
, and
E.
Girt
, “
Effects of substitution on the exchange stiffness and magnetization of Co films
,”
Phys. Rev. B
90
,
235408
(
2014
).
39.
J. M. D.
Coey
,
Magnetism and Magnetic Materials
(
Cambridge University Press
,
2010
).
40.
J.
Barnaś
and
P.
Grünberg
, “
On the biquadratic interlayer coupling in layered magnetic structures
,”
J. Magn. Magn. Mater.
121
,
326
329
(
1993
).
41.
R. P.
Erickson
,
K. B.
Hathaway
, and
J. R.
Cullen
, “
Mechanism for non-Heisenberg-exchange coupling between ferromagnetic layers
,”
Phys. Rev. B
47
,
2626
2635
(
1993
).
42.
J. F.
Bobo
,
H.
Kikuchi
,
O.
Redon
,
E.
Snoeck
,
M.
Piecuch
, and
R. L.
White
, “
Pinholes in antiferromagnetically coupled multilayers: Effects on hysteresis loops and relation to biquadratic exchange
,”
Phys. Rev. B
60
,
4131
(
1999
).
43.
J. C.
Slonczewski
, “
Origin of biquadratic exchange in magnetic multilayers
,”
J. Appl. Phys.
73
,
5957
5962
(
1993
).
44.
J. C.
Slonczewski
, “
Fluctuation mechanism for biquadratic exchange coupling in magnetic multilayers
,”
Phys. Rev. Lett.
67
,
3172
(
1991
).

Supplementary Material

You do not currently have access to this content.