Using sorbent materials to separate and concentrate ambient humidity is a promising option for atmospheric water harvesting in the face of impending worldwide freshwater scarcity. The method of cycled sorption and forced release can facilitate efficient condensation, but performance strongly depends on device-scale issues of heat and mass transfer. We examine the potential of using microwave radiation to liberate sorbed vapor, in proof-of-concept experiments with hygroscopic salt-infused paper towel as simple sorbents. We quantify performance as a function of tunable system parameters and ambient humidity. Our results demonstrate promising aspects: both rapid desorption and regeneration, owing to water-tuned dielectric heating and directing flow through fibrous sorbent, respectively; substantial efficiency of moisture separation toward very low (25%) relative humidity; and robust repeatability over many cycles, due to the targeted energy input and retention of hygroscopic salt within the paper scaffold.

1.
“The United Nation World Water development report: Nature based solutions for water, Paris,” Technical Report, 2018.
2.
O.
Klemm
,
R. S.
Schemenauer
,
A.
Lummerich
,
P.
Cereceda
,
V.
Marzol
,
D.
Corell
,
J.
Van Heerden
,
D.
Reinhard
,
T.
Gherezghiher
,
J.
Olivier
, and
P.
Osses
, “
Fog as a fresh-water resource: Overview and perspectives
,”
Ambio
41
,
221
234
(
2012
).
3.
R. V.
Wahlgren
, “
Atmospheric water vapour processor designs for potable water production: A review
,”
Water Res.
35
,
1
22
(
2001
).
4.
A.
LaPotin
,
H.
Kim
,
S. R.
Rao
, and
E. N.
Wang
, “
Adsorption-based atmospheric water harvesting: Impact of material and component properties on system-level performance
,”
Acc. Chem. Res.
52
,
1588
1597
(
2019
).
5.
Y.
Tu
,
R.
Wang
,
Y.
Zhang
, and
J.
Wang
, “
Progress and expectation of atmospheric water harvesting
,”
Joule
2
,
1452
1475
(
2018
).
6.
R.
Wang
,
L.
Wang
, and
J.
Wu
,
Adsorption Refrigeration Technology: Theory and Application
(
John Wiley & Sons
,
2014
).
7.
X.
Zhou
,
H.
Lu
,
F.
Zhao
, and
G.
Yu
, “
Atmospheric water harvesting: A review of material and structural designs
,”
ACS Mater. Lett.
2
,
671
684
(
2020
).
8.
A. J.
Rieth
,
S.
Yang
,
E. N.
Wang
, and
M.
Dincă
, “
Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit
,”
ACS Cent. Sci.
3
,
668
672
(
2017
).
9.
H.
Furukawa
,
F.
Gandara
,
Y.-B.
Zhang
,
J.
Jiang
,
W. L.
Queen
,
M. R.
Hudson
, and
O. M.
Yaghi
, “
Water adsorption in porous metal–organic frameworks and related materials
,”
J. Am. Chem. Soc.
136
,
4369
4381
(
2014
).
10.
A.
Permyakova
,
S.
Wang
,
E.
Courbon
,
F.
Nouar
,
N.
Heymans
,
P.
d’Ans
,
N.
Barrier
,
P.
Billemont
,
G.
De Weireld
,
N.
Steunou
, and
M.
Frère
, “
Design of salt–metal organic framework composites for seasonal heat storage applications
,”
J. Mater. Chem. A
5
,
12889
12898
(
2017
).
11.
A.
Entezari
,
M.
Ejeian
, and
R.
Wang
, “
Extraordinary air water harvesting performance with three phase sorption
,”
Mater. Today Energy
13
,
362
373
(
2019
).
12.
X.
Liu
,
W.
Wang
,
S.
Xie
, and
Q.
Pan
, “
Performance characterization and application of composite adsorbent LiCl@ACFF for moisture harvesting
,”
Sci. Rep.
11
,
14412
(
2021
).
13.
H.
Shan
,
Q.
Pan
,
C.
Xiang
,
P.
Poredoš
,
Q.
Ma
,
Z.
Ye
,
G.
Hou
, and
R.
Wang
, “
High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane
,”
Cell Rep. Phys. Sci.
2
,
100664
(
2021
).
14.
K.
Yang
,
T.
Pan
,
Q.
Lei
,
X.
Dong
,
Q.
Cheng
, and
Y.
Han
, “
A roadmap to sorption-based atmospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization
,”
Environ. Sci. Technol.
55
,
6542
6560
(
2021
).
15.
N.
Thakur
,
A.
Sargur Ranganath
,
K.
Sopiha
, and
A.
Baji
, “
Thermoresponsive cellulose acetate–poly (N-isopropylacrylamide) core–shell fibers for controlled capture and release of moisture
,”
ACS Appl. Mater. Interfaces
9
,
29224
29233
(
2017
).
16.
R.
Li
,
Y.
Shi
,
L.
Shi
,
M.
Alsaedi
, and
P.
Wang
, “
Harvesting water from air: Using anhydrous salt with sunlight
,”
Environ. Sci. Technol.
52
,
5398
5406
(
2018
).
17.
M.
Hamid
, “
Microwave drying of clothes
,”
J. Microw. Power Electromagn. Energy
26
,
107
113
(
1991
).
18.
A.
Nirmaan
,
B.
Rohitha Prasantha
, and
B.
Peiris
, “
Comparison of microwave drying and oven-drying techniques for moisture determination of three paddy (Oryza sativa L.) varieties
,”
Chem. Biol. Technol. Agric.
7
,
1
7
(
2020
).
19.
S. S.
Dobrotvorskiy
,
L. G.
Dobrovolska
, and
B. A.
Aleksenko
, “Computer simulation of the process of regenerating the adsorbent using microwave radiation in compressed air dryers,” in Advances in Manufacturing (Springer, 2018), pp. 511–519.
20.
H.
Zhang
,
Y.
Yuan
,
Q.
Sun
,
X.
Cao
, and
L.
Sun
, “
Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application
,”
Sci. Rep.
6
,
34115
(
2016
).
21.
X.
Zheng
,
T.
Ge
, and
R.
Wang
, “
Recent progress on desiccant materials for solid desiccant cooling systems
,”
Energy
74
,
280
294
(
2014
).
22.
A.
Assaf
,
R.
Haas
, and
C.
Purves
, “
A new interpretation of the cellulose-water adsorption isotherm and data concerning the effect of swelling and drying on the colloidal surface of cellulose
,”
J. Am. Chem. Soc.
66
,
66
73
(
1944
).
23.
A.
Célino
,
S.
Fréour
,
F.
Jacquemin
, and
P.
Casari
, “
The hygroscopic behavior of plant fibers: A review
,”
Front. Chem.
1
,
43
(
2014
).
24.
D.
Wang
,
Y.
Li
,
D.
Li
,
Y.
Xia
, and
J.
Zhang
, “
A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems
,”
Renewable Sustainable Energy Rev.
14
,
344
353
(
2010
).

Supplementary Material

You do not currently have access to this content.