A circular waveguide electron cyclotron resonance plasma thruster prototype driven by microwaves at 5.8 GHz (80–300 W) is characterized. The magnetic field is generated by a combination of Sm-CoYXG32 magnets and an electromagnet, which enables the tuning of the resonance position and magnetic nozzle shape. The main plasma plume properties are analyzed by using electrostatic probes when the mass flow rate (Xenon), microwave power, electromagnet current, and propellant injector design are varied. An estimation of the propulsive performance of the device is also presented. Results show that a single radial injector hole is not sufficient for a symmetric ion current profile and that magnetic nozzle shape and strength tuning can significantly affect the divergence angle and thruster floating potential. A utilization efficiency of up to 70% and electron temperatures of up to 16 eV have been measured.

1.
E. R.
Brochure
, “Satellites to be built and launched by 2030,” see https://digital-platform.euroconsult-ec.com/wp-content/uploads/2022/01/Extract_Sat_Built_2021.pdf (2021).
2.
J.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
3.
K.
Holste
,
P.
Dietz
,
S.
Scharmann
,
K.
Keil
,
T.
Henning
,
D.
Zschätzsch
,
M.
Reitemeyer
,
B.
Nauschütt
,
F.
Kiefer
,
F.
Kunze
, and
J.
Zorn
, “
Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer
,”
Rev. Sci. Instrum.
91
,
061101
(
2020
).
4.
D.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Jet Propulsion Laboratory
,
Pasadena, CA
,
2008
).
5.
E.
Ahedo
, “
Plasmas for space propulsion
,”
Plasma. Phys. Controlled Fusion
53
,
124037
(
2011
).
6.
R.
Jahn
,
Physics of Electric Propulsion
(
Dover
,
2006
).
7.
S.
Bathgate
,
M.
Bilek
, and
D.
Mckenzie
, “
Electrodeless plasma thrusters for spacecraft: A review
,”
Plasma Sci. Technol.
19
,
083001
(
2017
).
8.
P.
Jiménez
,
M.
Merino
, and
E.
Ahedo
, “
Wave propagation and absorption in a helicon plasma thruster source and its plume
,”
Plasma Sources Sci. Technol.
31
,
045009
(
2022
).
9.
P.
Guittienne
,
E.
Chevalier
, and
C.
Hollenstein
, “
Towards an optimal antenna for helicon waves excitation
,”
J. Appl. Phys.
98
,
083304
(
2005
).
10.
K.
Takahashi
, “
Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles
,”
Rev. Mod. Plasma Phys.
3
,
3
(
2019
).
11.
A.
Sánchez-Villar
,
J.
Zhou
,
M.
Merino
, and
E.
Ahedo
, “
Coupled plasma transport and electromagnetic wave simulation of an ECR thruster
,”
Plasma Sources Sci. Technol.
30
,
045005
(
2021
).
12.
G.
Bethke
and
D.
Miller
, “
Cyclotron resonance thruster design techniques
,”
AIAA J.
4
,
835
840
(
1966
).
13.
K.
Takahashi
,
C.
Charles
,
R.
Boswell
, and
A.
Ando
, “
Performance improvement of a permanent magnet helicon plasma thruster
,”
J. Phys. D: Appl. Phys.
46
,
352001
(
2013
).
14.
T. H.
Stix
,
Waves in Plasmas
(
Springer Science & Business Media
,
1992
).
15.
J.
Bittencourt
,
Fundamentals of Plasma Physics
(
Springer
,
Berlin
,
2004
).
16.
E.
Ahedo
and
M.
Merino
, “
Two-dimensional supersonic plasma acceleration in a magnetic nozzle
,”
Phys. Plasmas
17
,
073501
(
2010
).
17.
M.
Merino
and
E.
Ahedo
, “Magnetic nozzles for space plasma thrusters,” in Encyclopedia of Plasma Technology, edited by J. L. Shohet (Taylor and Francis, 2016), Vol. 2, pp. 1329–1351.
18.
D. B.
Miller
and
E. F.
Gibbons
, “
Experiments with an electron cyclotron resonance plasma accelerator
,”
AIAA J.
2
,
35
41
(
1964
).
19.
D.
Miller
,
E.
Gibbons
, and
P.
Gloersen
, “Cyclotron resonance propulsion system,” in Electric Propulsion Conference (AIAA, 1962), pp. 2.
20.
G.
Crimi
,
A.
Eckert
, and
D.
Miller
, “Microwave driven magnetic plasma accelerator studies (cyclops),” Technical Report (General Electric Company, Space Sciences Laboratory, Missile and Space Division, 1967).
21.
J.
Sercel
, “Electron-cyclotron-resonance (ECR) plasma acceleration,” in AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference (AIAA, 1987).
22.
J.
Sercel
, “Simple model of plasma acceleration in a magnetic nozzle,” in 21st International Electric Propulsion Conference (AIAA, 1990), Vol. 1.
23.
J.
Sercel
, “An experimental and theoretical study of the ECR plasma engine,” Ph.D. thesis (California Institute of Technology, 1993).
24.
J.
Jarrige
,
P.
Elias
,
F.
Cannat
, and
D.
Packan
, “Characterization of a coaxial ECR plasma thruster,” in 44th AIAA Plasma Dynamics and Lasers Conference, San Diego (AIAA, 2013).
25.
F.
Cannat
,
T.
Lafleur
,
J.
Jarrige
,
P.
Chabert
,
P.
Elias
, and
D.
Packan
, “
Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model
,”
Phys. Plasmas
22
,
053503
(
2015
).
26.
S.
Peterschmitt
and
D.
Packan
, “Comparison of waveguide coupled and coaxial coupled ECRA magnetic nozzle thruster using a thrust balance,” Presented at the 36th International Electric Propulsion Conference, University of Vienna, Vienna, Austria 15–20 September 2019.
27.
S.
Peterschmitt
and
D.
Packan
, “
Impact of the microwave coupling structure on an electron-cyclotron resonance thruster
,”
J. Propul. Power
37
,
806
815
(
2021
).
28.
V.
Désangles
and
J. J. D.
Packan
, “ECRA thruster advances, 30 w and 200 w prototypes latest performances,” in IEPC 2022: International Electric Propulsion Conference, Boston, MA Jun 2022.
29.
A.
Sheppard
and
J.
Little
, “
Scaling laws for electrodeless plasma propulsion with water vapor propellant
,”
Plasma Sources Sci. Technol.
29
,
045007
(
2020
).
30.
A. J.
Sheppard
and
J. M.
Little
, “
Performance analysis of an electron cyclotron resonance thruster with various propellants
,”
J. Propul. Power
38
(
6
),
998
1008
(
2022
).
31.
B.
Wachs
and
B.
Jorns
, “Optimization of an ECR thruster using two frequency and pulsed waveforms,” in AIAA Propulsion and Energy 2021 Forum (AIAA, 2021) pp. 3382.
32.
D. M.
Pozar
,
Microwave Engineering
(
John Wiley & sons
,
2011
).
33.
A.
Ganguli
,
M.
Akhtar
,
R.
Tarey
, and
R.
Jarwal
, “
Absorption of left-polarized microwaves in electron cyclotron resonance plasmas
,”
Phys. Lett. A
250
,
137
143
(
1998
).
34.
R.
Geller
,
Electron Cyclotron Resonance Ion Sources and ECR Plasmas
(
CRC Press
,
1996
).
35.
M.
Wijnen
, “Diagnostic methods for the characterization of a helicon plasma thruster,” Ph.D. thesis (Universidad Carlos III de Madrid, Leganés, Spain, 2023).
36.
R. B.
Lobbia
and
B. E.
Beal
, “
Recommended practice for use of Langmuir probes in electric propulsion testing
,”
J. Propul. Power
33
,
566
581
(
2017
).
37.
T.
Vialis
, “Développement d’un propulseur plasma à résonance cyclotron électronique pour les satellites,” Ph.D. thesis (Sorbonne Universite, 2018).
38.
Y.
Daren
,
D.
Jiapeng
, and
D.
Jingmin
, “
Spectrum diagnosis for fuchsia plume of Hall effect thruster with xenon as propellant
,”
Plasma Sci. Technol.
8
,
685
(
2006
).
39.
D.
Kusamoto
and
K.
Komurasaki
, “Optical diagnosis of plasma in a channel of Hall thrusters,” in International Electric Propulsion Conference (ERPS, 1997), pp. 405–410.
40.
X.-M.
Zhu
,
Y.-F.
Wang
,
Y.
Wang
,
D.-R.
Yu
,
O.
Zatsarinny
,
K.
Bartschat
,
T. V.
Tsankov
, and
U.
Czarnetzki
, “
A xenon collisional-radiative model applicable to electric propulsion devices: II. Kinetics of the 6s, 6p, and 5d states of atoms and ions in Hall thrusters
,”
Plasma Sources Sci. Technol.
28
,
105005
(
2019
).
41.
D.
Packan
,
P.-Q.
Elias
,
J.
Jarrige
,
T.
Vialis
,
S.
Correyero
,
S.
Peterschmitt
,
J.
Porto-Hernandez
,
M.
Merino
,
A.
Sánchez-Villar
,
E.
Ahedo
,
G.
Peyresoubes
,
A.
Thorinius
,
S.
Denis
,
K.
Holste
,
P.
Klar
,
S.
Scharmann
,
J.
Zorn
,
M.
Bekemans
,
T.
Scalais
,
E.
Bourguignon
,
S.
Zurbach
,
P.
Azais
,
I.
Habbassi
,
M.
Mares
, and
A.
Hoque
, “H2020 MINOTOR: Magnetic nozzle electron cyclotron resonance thruster,” in 36th International Electric Propulsion Conference, IEPC-2019-875 (Electric Rocket Propulsion Society, Vienna, 2019).
42.
“Biagi database,” see https://nl.lxcat.net (last accessed December 6, 2022).
43.
“‘Nifs database,” see https://dbshino.nifs.ac.jp.
44.
H. C.
Dragnea
,
A. L.
Ortega
,
H.
Kamhawi
, and
I. D.
Boyd
, “
Simulation of a Hall effect thruster using krypton propellant
,”
J. Propul. Power
36
(
3
),
335
345
(
2020
).
45.
M.
Merino
and
E.
Ahedo
, “
Plasma detachment in a propulsive magnetic nozzle via ion demagnetization
,”
Plasma Sources Sci. Technol.
23
,
032001
(
2014
).
46.
M.
Martínez-Sánchez
,
J.
Navarro-Cavallé
, and
E.
Ahedo
, “
Electron cooling and finite potential drop in a magnetized plasma expansion
,”
Phys. Plasmas
22
,
053501
(
2015
).
47.
M.
Merino
and
E.
Ahedo
, “
Influence of electron and ion thermodynamics on the magnetic nozzle plasma expansion
,”
IEEE Trans. Plasma Sci.
43
,
244
251
(
2015
).
48.
E.
Ahedo
,
S.
Correyero
,
J.
Navarro
, and
M.
Merino
, “
Macroscopic and parametric study of a kinetic plasma expansion in a paraxial magnetic nozzle
,”
Plasma Sources Sci. Technol.
29
,
045017
(
2020
).
49.
S.
Correyero
,
J.
Jarrige
,
D.
Packan
, and
E.
Ahedo
, “
Plasma beam characterization along the magnetic nozzle of an ECR thruster
,”
Plasma Sources Sci. Technol.
28
,
095004
(
2019
).
50.
J.
Little
and
E.
Choueiri
, “
Electron cooling in a magnetically expanding plasma
,”
Phys. Rev. Lett.
117
,
225003
(
2016
).
51.
M.
Merino
,
J.
Nuez
, and
E.
Ahedo
, “
Fluid-kinetic model of a propulsive magnetic nozzle
,”
Plasma Sources Sci. Technol.
30
,
115006
(
2021
).
52.
A.
Vinci
,
Q.
Delavière-Delion
, and
S.
Mazouffre
, “
Electron thermodynamics along magnetic nozzle lines in a helicon plasma
,”
J. Electric Propuls.
1
,
4
(
2022
).
53.
K.
Takahashi
,
C.
Charles
,
R. W.
Boswell
, and
A.
Ando
, “
Thermodynamic analogy for electrons interacting with a magnetic nozzle
,”
Phys. Rev. Lett.
125
,
165001
(
2020
).
54.
J. Y.
Kim
,
K.-J.
Chung
,
K.
Takahashi
,
M.
Merino
, and
E.
Ahedo
, “Kinetic electron cooling in magnetic nozzles: Experiments and modeling,” arXiv:2212.07161 (2022).
55.
G.
Sánchez-Arriaga
,
J.
Zhou
,
E.
Ahedo
,
M.
Martínez-Sánchez
, and
J. J.
Ramos
, “
Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles
,”
Plasma Sources Sci. Technol.
27
,
035002
(
2018
).
56.
J. Y.
Kim
,
K.
Chung
,
S.
Kim
,
J. H.
Ryu
,
K.-J.
Chung
, and
Y.
Hwang
, “
Thermodynamics of a magnetically expanding plasma with isothermally behaving confined electrons
,”
New J. Phys.
20
,
063033
(
2018
).
57.
M. R.
Inchingolo
,
M.
Merino
, and
J.
Navarro-Cavallé
, “Hybrid pic-fluid simulation of a waveguide ECR magnetic nozzle plasma thruster,” in Space Propulsion Conference 2021, 00192 (Association Aéronautique et Astronautique de France, 2021).
You do not currently have access to this content.