A pulsed microwave surfaguide-type discharge used for nitrogen fixation in N2–O2 gas mixtures is characterized by optical emission spectroscopy. Results show that both rotational and vibrational temperatures are elevated in the active zone near the waveguide, decaying along the discharge tube in both upstream and downstream. The characteristic length of optical emission from NO(A-X) transition gets contracted when pressure increases, specifically at P2 Torr. The degree of vibrational non-equilibrium (defined as the ratio between vibrational and rotational temperatures) is decreased by a factor of two when pressure changes from 0.6 to 10 Torr. Non-equilibrium likely disappears as the discharge pressure rises, resulting in a gas temperature elevation. A correlation between gas residence time, pulse duration, and characteristic times for different energy transfer channels is discussed. The rotational–vibrational dynamics differs for NO and N2 during the pulse. Both species lose vibrational excitation at the beginning of the pulse, whereas N2 gets re-excited again during the second half of the pulse, which may occur as a result of an efficient pumping-up effect through the vibrational–vibrational energy transfer. At the same time, vibrational relaxation of NO takes place primarily due to a strong vibrational–translational exchange via NO–O2 and NO–O collisions.

1.
B. S.
Patil
,
Q.
Wang
,
V.
Hessel
, and
J.
Lang
,
Catal. Today
256
,
49
(
2015
).
2.
N.
Cherkasov
,
A. O.
Ibhadon
, and
P.
Fitzpatrick
,
Chem. Eng. Process. Process Intensif.
90
,
24
(
2015
).
3.
A.
Fridman
,
Plasma Chemistry
(
Cambridge University Press
,
Cambridge
,
2008
).
4.
V. D.
Rusanov
,
A. A.
Fridman
, and
G. V.
Sholin
,
Sov. Phys. Usp.
24
,
447
(
1981
).
5.
M.
Moisan
,
M.
Chaker
,
Z.
Zakrzewski
, and
J.
Paraszczak
,
J. Phys. E
20
,
1356
(
1987
).
6.
M.
Moisan
and
H.
Nowakowska
,
Plasma Sources Sci. Technol.
27
,
073001
(
2018
).
7.
C.
Boisse-Laporte
,
C.
Chave-Normand
, and
J.
Marec
,
Plasma Sources Sci. Technol.
6
,
70
(
1997
).
8.
S.
van Alphen
,
V.
Vermeiren
,
T.
Butterworth
,
D. C.
van Den Bekerom
,
G. J.
van Rooij
, and
A.
Bogaerts
,
J. Phys. Chem. C
124
,
1765
(
2020
).
9.
V.
Vermeiren
and
A.
Bogaerts
,
J. Phys. Chem. C
123
,
17650
(
2019
).
10.
N.
Britun
,
T.
Silva
,
G.
Chen
,
T.
Godfroid
,
J.
Van Der Mullen
, and
R.
Snyders
,
J. Phys. D: Appl. Phys.
51
,
144002
(
2018
).
11.
V.
Jivotov
,
J. Phys. IV
8
,
401
–410 (
1998
).
12.
E.
Benova
,
T.
Petrova
,
A.
Blagoev
, and
I.
Zhelyazkov
,
J. Appl. Phys.
84
,
147
(
1998
).
13.
M.
Capitelli
,
R.
Celiberto
,
G.
Colonna
,
F.
Esposito
,
C.
Gorse
,
K.
Hassouni
,
A.
Laricchiuta
, and
S.
Longo
, “Fundamental aspects of plasma chemical physics: Kinetics,” in Springer Series on Atomic, Optical, and Plasma Physics (Springer, New York, NY, 2015).
14.
J.
Loureiro
,
V.
Guerra
,
P. A.
,
C. D.
Pintassilgo
, and
M. L. D.
Silva
,
Plasma Sources Sci. Technol.
20
,
024007
(
2011
).
15.
V.
Guerra
and
J.
Loureiro
,
J. Phys. D: Appl. Phys.
28
,
1903
(
1995
).
16.
I. V.
Adamovich
,
S.
Saupe
,
M. J.
Grassi
,
S. O.
Macheret
, and
J.
William Rich
, in
AIAA 24th Plasma Dynamics, and Lasers Conference
1993 (AIAA, 1993), Vol. 174, pp. 3199.
17.
M. E.
Whitson
and
R. J.
McNeal
,
J. Chem. Phys.
66
,
2696
(
1976
).
18.
R. I.
Asisov
,
V. K.
Givotov
,
V. D.
Rusanov
, and
A.
Fridman
,
Sov. Phys.
14
,
366
(
1980
).
19.
S.
Kelly
and
A.
Bogaerts
,
Joule
5
,
3006
(
2021
).
20.
L. S.
Polak
,
A. A.
Ovsiannikov
,
D. I.
Slovetsky
, and
F. B.
Vurzel
,
M. Nauk.
46
,
295
(
1975
).
21.
B. S.
Patil
,
N.
Cherkasov
,
J.
Lang
,
A. O.
Ibhadon
,
V.
Hessel
, and
Q.
Wang
,
Appl. Catal. B
194
,
123
(
2016
).
22.
X.
Pei
,
D.
Gidon
,
Y. J.
Yang
,
Z.
Xiong
, and
D. B.
Graves
,
Chem. Eng. J.
362
,
217
(
2019
).
23.
X.
Pei
,
D.
Gidon
, and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
53
,
044002
(
2020
).
24.
N.
Britun
,
V.
Gamaleev
, and
M.
Hori
,
Plasma Sources Sci. Technol.
30
,
08LT02
(
2021
).
25.
F.
Jardali
,
S.
Van Alphen
,
J.
Creel
,
H.
Ahmadi Eshtehardi
,
M.
Axelsson
,
R.
Ingels
,
R.
Snyders
, and
A.
Bogaerts
,
Green Chem.
23
,
1748
(
2021
).
26.
O. S.
Bahnamiri
,
C.
Verheyen
,
R.
Snyders
,
A.
Bogaerts
, and
N.
Britun
,
Plasma Sources Sci. Technol.
30
,
065007
(
2021
).
27.
N.
Britun
,
T.
Godfroid
, and
R.
Snyders
, J. CO2 Util. 
41
,
101239
(
2020
).
28.
T.
Silva
,
N.
Britun
,
T.
Godfroid
, and
R.
Snyders
,
Plasma Sources Sci. Technol.
23
,
025009
(
2014
).
29.
J.
Voráč
,
L.
Kusýn
, and
P.
Synek
,
Rev. Sci. Instrum.
90
,
123102
(
2019
).
30.
D.
Luque
and
J.
Crosley
, “LIFBASE: database and spectral simulation program,”
SRI Int. Rep.
9
,
99
(
1999
); available at https://www.sri.com/platform/lifbase-spectroscopy-tool/.
31.
K. H.
Becker
,
H.
Engels
, and
T.
Tatarczyk
,
Chem. Phys. Lett.
5
,
111
(
1977
).
32.
F.
Di Teodoro
,
J. E.
Rehm
,
R. L.
Farrow
, and
P. H.
Paul
,
J. Chem. Phys.
113
,
3046
(
2000
).
33.
C. A.
Brau
and
R. M.
Jonkman
,
J. Chem. Phys.
52
,
477
(
1970
).
34.
F. J.
Uribe
,
E. A.
Mason
, and
J.
Kestin
,
J. Phys. Chem. Ref. Data
19
,
1123
(
1990
).
35.
G.
Dilecce
,
Plasma Sources Sci. Technol.
23
,
015011
(
2014
).
36.
J. G.
Parker
,
Phys. Fluids
2
,
449
(
1959
).
37.
P. J.
Bruggeman
,
N.
Sadeghi
,
D. C.
Schram
, and
V.
Linss
,
Plasma Sources Sci. Technol.
23
,
023001
(
2014
).
38.
V. N.
Ochkin
,
Spectroscopy of Low Temperature Plasma
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2009
).
39.
V.
Guerra
,
A.
Tejero-del Caz
,
C. D.
Pintassilgo
, and
L. L.
Alves
,
Plasma Sources Sci. Technol.
28
,
073001
(
2019
).
40.
N. A.
Popov
,
J. Phys. D: Appl. Phys.
44
,
285201
(
2011
).
41.
A. F.
Van Gessel
and
P. J.
Bruggeman
,
J. Chem. Phys.
138
,
204306
(
2013
).
42.
D.
Staack
,
B.
Farouk
,
A. F.
Gutsol
, and
A. A.
Fridman
,
Plasma Sources Sci. Technol.
15
,
818
(
2006
).
43.
The LXCat open-access, LXCat.
44.
L. L.
Alves
,
J. Phys. Conf. Ser.
565
,
12007
(
2014
).
45.
L.
Terraz
,
T.
Silva
,
A.
Morillo-Candas
,
O.
Guaitella
,
A.
Tejero-del Caz
,
L. L.
Alves
, and
V.
Guerra
,
J. Phys. D: Appl. Phys.
53
,
094002
(
2020
).
46.
G. D.
Billing
and
E. R.
Fisher
,
Chem. Phys.
43
,
395
(
1979
).
47.
R. L.
Taylor
,
M.
Camac
, and
R. M.
Feinberg
,
Symp. Combust.
11
,
49
(
1967
).
48.
F. R.
Gilmore
,
E.
Bauer
, and
J. W.
McGowan
,
J. Quant. Spectrosc. Radiat. Transf.
9
,
157
(
1969
).
49.
R. L.
Taylor
and
S.
Bitterman
,
Rev. Mod. Phys.
41
,
26
(
1969
).
50.
G. P.
Oblapenko
,
J. Phys. Chem. A
122
,
9615
(
2018
).
51.
F.
Esposito
,
M.
Capitelli
, and
C.
Gorse
,
Chem. Phys.
257
,
193
(
2000
).
52.
A.
Starikovskiy
and
N.
Aleksandrov
,
Prog. Energy Combust. Sci.
39
,
61
(
2013
).
53.
B.
Bohn
,
A.
Doughty
,
G.
Hancock
,
E. L.
Moore
, and
C.
Morrell
,
Phys. Chem. Chem. Phys.
1
,
1833
(
1999
).
54.
R. P.
Fernando
and
I. W.
Smith
,
J. Chem. Soc. Faraday Trans. Mol. Chem. Phys.
77
,
459
(
1981
).
55.
B. D.
Green
,
G. E.
Caledonia
,
R. E.
Murphy
, and
F. X.
Robert
,
J. Chem. Phys.
76
,
2441
(
1982
).
56.
G.
Hancock
,
M.
Morrison
, and
M.
Saunders
,
Chem. Phys. Lett.
425
,
216
(
2006
).
57.
K. L.
Wray
,
J. Chem. Phys.
36
,
2597
(
1962
).
58.
H. E.
Bass
and
G. L.
Hill
,
J. Chem. Phys.
5179
,
5179
(
1973
).
59.
G.
Kamimoto
and
H.
Matsui
,
J. Chem. Phys.
53
,
3987
(
1970
).
60.
R. W.
Lutz
and
J. H.
Kiefer
,
Phys. Fluids
9
,
1638
(
1966
).
61.
V. A.
Sal’nikov
and
A. M.
Starik
,
High Temp.
33
,
121
(
1995
).
62.
M.
Capitelli
,
G.
Colonna
,
G.
D’Ammando
,
A.
Laricchiuta
, and
L. D.
Pietanza
,
Plasma Sources Sci. Technol.
26
,
034004
(
2017
).
63.
R. J.
McNeal
,
M. E.
Whitson
, and
G. R.
Cook
,
J. Geophys. Res.
79
, ,
1527
(
1974
).
64.
M.
Capitelli
,
C.
Gorse
, and
G. D.
Billing
,
Chem. Phys.
52
,
299
(
1980
).
65.
M.
Moisan
and
Z.
Zakrzewski
,
J. Phys. D: Appl. Phys.
24
,
1025
(
1991
).
66.
A.
Berthelot
and
A.
Bogaerts
,
J. Phys. Chem. C
121
,
8236
(
2017
).
67.
G.
Chen
,
R.
Snyders
, and
N.
Britun
, J. CO2 Util. 
49
,
101557
(
2021
).
68.
S.
Kelly
,
A.
van de Steeg
,
A.
Hughes
,
G.
van Rooij
, and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
30
,
055005
(
2021
).
You do not currently have access to this content.