Field electron emission from nanometer-scale objects deviates from the predictions of the classical emission theory as both the electrostatic potential curves within the tunneling region and the image potential deviates from the planar one. This impels the inclusion of additional correction terms in the potential barrier. At the apex of a tip-like rotationally symmetric surface, these terms are proportional to the (single) local emitter curvature. The present paper generalizes this relation, showing that for any emitter geometry, the coefficient of the correction terms is given by the mean curvature, i.e., the average of the two principal curvatures.

1.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London A
119
,
173
(
1928
).
2.
L. W.
Nordheim
,
Proc. R. Soc. London A
121
,
626
(
1928
).
3.
E. L.
Murphy
and
R. H.
Good
,
Phys. Rev.
102
,
1464
(
1956
).
4.
K. L.
Jensen
and
M.
Cahay
,
Appl. Phys. Lett.
88
,
154105
(
2006
).
5.
A.
Kyritsakis
and
J. P.
Xanthakis
,
Proc. R. Soc. A
471
,
20140811
(
2015
).
6.
J.
He
,
P.
Cutler
, and
N.
Miskovsky
,
Appl. Phys. Lett.
59
,
1644
(
1991
).
7.
A.
Kyritsakis
,
J. P.
Xanthakis
, and
D.
Pescia
,
Proc. R. Soc. A
470
,
20130795
(
2014
).
8.
H.
Cabrera
,
D. A.
Zanin
,
L. G.
De Pietro
,
T.
Michaels
,
P.
Thalmann
,
U.
Ramsperger
,
A.
Vindigni
,
D.
Pescia
,
A.
Kyritsakis
,
J. P.
Xanthakis
,
F.
Li
, and
A.
Abanov
,
Phys. Rev. B
87
,
115436
(
2013
).
9.
C. J.
Edgcombe
and
N.
de Jonge
,
J. Phys. D: Appl. Phys.
40
,
4123
(
2007
).
10.
E. W.
Weisstein
, Umbilic Point (From MathWorld–A Wolfram Web Resource).
11.
S.
Santandrea
,
F.
Giubileo
,
V.
Grossi
,
S.
Santucci
,
M.
Passacantando
,
T.
Schroeder
,
G.
Lupina
, and
A.
Di Bartolomeo
,
Appl. Phys. Lett.
98
,
163109
(
2011
).
12.
F.
Giubileo
,
A.
Grillo
,
M.
Passacantando
,
F.
Urban
,
L.
Iemmo
,
G.
Luongo
,
A.
Pelella
,
M.
Loveridge
,
L.
Lozzi
, and
A.
Di Bartolomeo
,
Nanomaterials
9
,
717
(
2019
).
13.
A.
Di Bartolomeo
,
F.
Giubileo
,
L.
Iemmo
,
F.
Romeo
,
S.
Russo
,
S.
Unal
,
M.
Passacantando
,
V.
Grossi
, and
A. M.
Cucolo
,
Appl. Phys. Lett.
109
,
023510
(
2016
).
14.
F.
Giubileo
,
A.
Grillo
,
A.
Pelella
,
E.
Faella
,
N.
Martucciello
,
M.
Passacantando
, and
A.
Di Bartolomeo
, in Sensors and Microsystems, Lecture Notes in Electrical Engineering, edited by G. Di Francia and C. Di Natale (Springer International Publishing, 2023), pp. 213–220.
15.
L.
Iemmo
,
F.
Urban
,
F.
Giubileo
,
M.
Passacantando
, and
A.
Di Bartolomeo
,
Nanomaterials
10
,
106
(
2020
).
16.
A.
Pelella
,
A.
Grillo
,
F.
Urban
,
F.
Giubileo
,
M.
Passacantando
,
E.
Pollmann
,
S.
Sleziona
,
M.
Schleberger
, and
A.
Di Bartolomeo
,
Adv. Electron. Mater.
7
,
2000838
(
2021
).
17.
A.
Patra
,
M. A.
More
,
D. J.
Late
, and
C. S.
Rout
,
J. Mater. Chem. C
9
,
11059
(
2021
).
18.
K.
Eimre
,
S.
Parviainen
,
A.
Aabloo
,
F.
Djurabekova
, and
V.
Zadin
,
J. Appl. Phys.
118
,
033303
(
2015
).
19.
A.
Kyritsakis
and
F.
Djurabekova
,
Comput. Mater. Sci.
128
,
15
(
2017
).
20.
A.
Kyritsakis
,
M.
Veske
,
K.
Eimre
,
V.
Zadin
, and
F.
Djurabekova
,
J. Phys. D: Appl. Phys.
51
,
225203
(
2018
).
21.
M.
Veske
,
A.
Kyritsakis
,
F.
Djurabekova
,
K. N.
Sjobak
,
A.
Aabloo
, and
V.
Zadin
,
Phys. Rev. E
101
,
053307
(
2020
).
22.
J. L.
Reynolds
,
Y.
Israel
,
A. J.
Bowman
,
B. B.
Klopfer
, and
M. A.
Kasevich
,
Phys. Rev. Appl.
19
,
014035
(
2023
).
23.
E. W.
Weisstein
, Mean Curvature (From MathWorld—A Wolfram Web Resource).
24.
D.
Biswas
,
R.
Ramachandran
, and
G.
Singh
,
Phys. Plasmas
25
,
013113
(
2018
).
25.
E. W.
Weisstein
, Monge Patch (From MathWorld—A Wolfram Web Resource).
26.
C. J.
Edgcombe
and
A. M.
Johansen
,
J. Vac. Sci. Technol. B
21
,
1519
(
2003
).
27.
J.
Holgate
and
M.
Coppins
,
Phys. Rev. Appl.
7
,
044019
(
2017
).
28.
A.
Kyritsakis
,
G. C.
Kokkorakis
,
J. P.
Xanthakis
,
T. L.
Kirk
, and
D.
Pescia
,
Appl. Phys. Lett.
97
,
023104
(
2010
).
29.
A.
Kyritsakis
and
J. P.
Xanthakis
,
Ultramicroscopy
125
,
24
(
2013
).
30.
A.
Kyritsakis
and
J.
Xanthakis
,
J. Appl. Phys.
119
,
045303
(
2016
).
31.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
John Wiley & Sons
,
1975
).
32.
D.
Henry
, “Perturbation of the boundary in boundary-value problems of partial differential equations,” in London Mathematical Society Lecture Note Series, edited by J. Hale and A. L. Pereira (Cambridge University Press, 2005).
33.
A.
Kyritsakis
, Mathematica notebook available on-line (2023), available at https://www.wolframcloud.com/obj/akyritsos1/Published/imageChargeIntegral.nb.

Supplementary Material

You do not currently have access to this content.