The discharge performance of antiferroelectric (AFE) capacitors is complicated and difficult to simulate due to the nonlinear polarization behavior of AFE. In this work, a nonlinear model for pulsed discharge AFEs was proposed based on a combination of the Preisach model and Kirchhoff’s law. The model was driven by the data from first-order reversal curves and direct-current-bias (DC-bias) dielectric test measurements. Thus, the discharge behavior of the AFE can be studied without actual discharge experiments. Specifically, AFE discharge waveforms were calculated and evaluated for different size parameters and external circuit parameters that were conducive to compare the properties of different AFE materials. Moreover, the size effect of the capacitor on the discharge performance was discussed, which should draw the attention of researchers to prevent exaggerated conclusions. As a consequence, this method would fill the gap of AFE discharge simulation.

1.
H.
Akiyama
,
T.
Sakugawa
,
T.
Namihira
,
K.
Takaki
,
Y.
Minamitani
, and
N.
Shimomura
,
IEEE Trans. Dielectr. Electr. Insul.
14
,
1051
(
2007
).
2.
Y.
He
,
J.
Ma
,
L.
Yu
,
S.
Dong
,
L.
Gao
,
W.
Zeng
, and
C.
Yao
,
IEEE Trans. Ind. Electron.
68
,
6286
(
2021
).
3.
R.
Junhui
,
R.
Guan
,
J.
Zhang
, and
H.
Sun
,
J. Phys.: Conf. Ser.
1894
,
012094
(
2021
).
4.
Q.
Zhu
,
L.
Dai
,
Y.
Zhang
, and
F.
Lin
,
Rev. Sci. Instrum.
93
,
084708
(
2022
).
5.
L.
min Wang
,
Z.
quan Zhang
,
Q.
xiang Liu
, and
T.
xin Zhang
,
Rev. Sci. Instrum.
91
,
054703
(
2020
).
6.
H.
Zhang
,
T.
Shu
,
Z.
Li
,
Z.
Zhang
,
W.
Li
, and
D.
Li
,
Rev. Sci. Instrum.
92
,
064707
(
2021
).
8.
H.
Zhang
,
X.
Chen
,
F.
Cao
,
G.
Wang
,
X.
Dong
,
Z.
Hu
, and
T.
Du
,
J. Am. Ceram. Soc.
93
,
4015
(
2010
).
9.
C. W.
Ahn
,
G.
Amarsanaa
,
S. S.
Won
,
S. A.
Chae
,
D. S.
Lee
, and
I. W.
Kim
,
ACS Appl. Mater. Interfaces
7
,
26381
(
2015
).
10.
Y.
Bao
,
M.
Zhou
,
S.
Yan
,
F.
Cao
,
X.
Dong
, and
G.
Wang
,
J. Eur. Ceram. Soc.
39
,
4785
(
2019
).
11.
X.
Liu
,
T.
Yang
, and
W.
Gong
,
J. Mater. Chem. A
10
,
4137
(
2022
).
12.
H.
Wang
,
Y.
Liu
,
T.
Yang
, and
S.
Zhang
,
Adv. Funct. Mater.
29
,
1807321
(
2019
).
13.
Q.
Zhu
,
K.
Zhao
,
R.
Xu
,
Y.
Feng
,
Z.
Xu
, and
X.
Wei
,
J. Alloys Compd.
877
,
160108
(
2021
).
14.
J.
Liu
,
P.
Li
,
C.
Li
,
W.
Bai
,
S.
Wu
,
P.
Zheng
,
J.
Zhang
, and
J.
Zhai
,
ACS Appl. Mater. Interfaces
14
,
17662
(
2022
).
15.
G.
Ge
,
C.
Shi
,
C.
Chen
,
Y.
Shi
,
F.
Yan
,
H.
Bai
,
J.
Yang
,
J.
Lin
,
B.
Shen
, and
J.
Zhai
,
Adv. Mater.
34
,
2201333
(
2022
).
16.
X.
Meng
,
Y.
Zhao
,
J.
Zhu
,
L.
Zhu
,
Y.
Li
, and
X.
Hao
,
J. Eur. Ceram. Soc.
42
,
6493
(
2022
).
17.
K.
Quan
,
Y.
Zhao
,
X.
Meng
,
Q.
Zhang
,
Y.
Hu
,
X.
Lou
,
Y.
Li
, and
X.
Hao
,
J. Am. Ceram. Soc.
106
,
420
(
2023
).
18.
H.
Fatoorehchi
,
H.
Abolghasemi
, and
R.
Zarghami
,
Appl. Math. Model
39
,
6021
(
2015
).
19.
R.
Xu
,
Y.
Feng
,
X.
Wei
, and
Z.
Xu
,
IEEE Trans. Dielectr. Electr. Insul.
26
,
2005
(
2019
).
20.
J.
Gao
and
T.
Yang
,
Ceram. Int.
47
,
32466
(
2021
).
21.
R.
Xu
,
Z.
Xu
,
Y.
Feng
,
X.
Wei
, and
J.
Tian
,
J. Appl. Phys.
120
,
144102
(
2016
).
22.
C.
Xu
,
Z.
Liu
,
X.
Chen
,
S.
Yan
,
F.
Cao
,
X.
Dong
, and
G.
Wang
,
AIP Adv.
7
,
115108
(
2017
).
23.
R.
Xu
,
D.
Tian
,
Z.
Xu
, and
Y.
Feng
,
J. Fusion Energy
34
,
717
(
2015
).
24.
S.
Choudhury
,
Y.
Li
,
C.
Krill III
, and
L.-Q.
Chen
,
Acta Mater.
53
,
5313
(
2005
).
25.
K.
Xu
,
X.
Shi
,
S.
Dong
,
J.
Wang
, and
H.
Huang
,
ACS Appl. Mater. Interfaces
14
,
25770–25780
(
2022
).
26.
A.
Sutor
,
S. J.
Rupitsch
, and
R.
Lerch
,
Appl. Phys. A
100
,
425
(
2010
).
27.
K.
Nadaud
,
C.
Borderon
,
R.
Renoud
,
M.
Bah
,
S.
Ginestar
, and
H. W.
Gundel
,
Appl. Phys. Lett.
118
,
042902
(
2021
).
28.
I.
Misirlioglu
,
L.
Pintilie
,
K.
Boldyreva
,
M.
Alexe
, and
D.
Hesse
,
Appl. Phys. Lett.
91
,
202905
(
2007
).
29.
Z.
Ma
,
Y.
Ma
,
Z.
Chen
,
F.
Zheng
,
H.
Gao
,
H.
Liu
, and
H.
Chen
,
Ceram. Int.
44
,
4338
(
2018
).
30.
P.
Liu
,
B.
Fan
,
G.
Yang
,
W.
Li
,
H.
Zhang
, and
S.
Jiang
,
J. Mater. Chem. C
7
,
4587
(
2019
).
31.
P.
Qiao
,
Y.
Zhang
,
X.
Chen
,
M.
Zhou
,
G.
Wang
, and
X.
Dong
,
J. Alloys Compd.
780
,
581
(
2019
).
32.
A.
Stancu
,
C.
Pike
,
L.
Stoleriu
,
P.
Postolache
, and
D.
Cimpoesu
,
J. Appl. Phys.
93
,
6620
(
2003
).
33.
I.
Mayergoyz
,
IEEE Trans. Magn.
22
,
603
(
1986
).
34.
L.
Cima
and
E.
Laboure
,
Ferroelectrics
288
,
11
(
2003
).
35.
M.
Tousignant
,
F.
Sirois
,
G.
Meunier
, and
C.
Guerin
,
IEEE Trans. Magn.
55
,
1
(
2019
).
36.
Y.
Pu
,
M.
Chen
,
X.
Li
,
L.
Zhang
,
F.
Zhuo
,
W.
Wang
, and
X.
Du
,
J. Mater. Sci.
56
,
9894
(
2021
).
37.
R.
Xu
,
J.
Tian
,
Q.
Zhu
,
T.
Zhao
,
Y.
Feng
,
X.
Wei
, and
Z.
Xu
,
Ceram. Int.
43
,
13918
(
2017
).
38.
X.
Liu
,
Y.
Li
, and
X.
Hao
,
J. Mater. Chem. A
7
,
11858
(
2019
).
39.
J.
Xia
,
F.
Cao
,
X.
Chen
,
Z.-S.
Lin
,
Y.
Song
,
Y.
Chen
,
S.
Yan
, and
G.
Wang
, “Investigation on discharge behavior of antiferroelectric multi-layer ceramic capacitors,”
IEEE Trans. Dielectr. Electr. Insul.
(published online).
40.
R.
Xu
,
Z.
Xu
,
Y.
Feng
,
J.
Tian
, and
D.
Huang
,
Ceram. Int.
42
,
12875
(
2016
).
41.
J.
Wei
,
T.
Yang
, and
H.
Wang
,
J. Eur. Ceram. Soc.
39
,
624
(
2019
).
42.
L.
Chen
,
J.
Zhou
,
L.
Xu
,
J.
Ding
,
Z.
Sun
,
Q.
Bao
, and
X.
Hao
,
Chem. Eng. J.
447
,
137367
(
2022
).
43.
P.-Z.
Ge
,
X.-G.
Tang
,
K.
Meng
,
X.-X.
Huang
,
S.-F.
Li
,
Q.-X.
Liu
, and
Y.-P.
Jiang
,
Chem. Eng. J.
429
,
132540
(
2022
).

Supplementary Material

You do not currently have access to this content.