The realization of high interconnect densities for three-dimensional integration demands development of new wafer-to-wafer bonding approaches. Recently introduced Cu-to-Cu wafer-to-wafer hybrid bonding schemes overcome scaling limitations, but like other Cu-based interconnect structures, they are prone to electromigration. Migration and growth of voids, induced by electromigration and mechanical stress, cause Cu-to-Cu hybrid bonds to fail. A comprehensive modeling approach is required to fully understand the complex dynamics of voids with their influencing factors, such as current density, temperature, and mechanical stress. In this work, we utilize such a modeling approach to perform studies of void migration through Cu-to-Cu hybrid bonds. The calculated velocities of the evolving void surface fully correspond to the experimentally observed behavior of voids migrating from the lower pad to the upper diffusion barrier of the upper pad, where they cause electrical failure. The migration velocity of a void in the upper pad is 20% higher than the migration velocity of a void in the bottom pad. Unbalance of the normal velocity distribution at the void surface leads to the transformation of the originally ellipsoid void into a teardrop shape. The simulations provide full insight in the impact of layout geometry, material properties, and operating conditions on void dynamics. In addition, the results enable targeted adjustments of the influencing factors to inhibit void migration and growth in order to delay or to fully prevent Cu-to-Cu hybrid bond failure.

1.
E.
Beyne
, “
The 3D interconnect technology landscape
,”
IEEE Des. Test
33
,
8
20
(
2016
).
2.
E.
Beyne
,
S.-W.
Kim
,
L.
Peng
,
N.
Heylen
,
J.
De Messemaeker
,
O. O.
Okudur
,
A.
Phommahaxay
,
T.-G.
Kim
,
M.
Stucchi
, and
D.
Velenis
, “Scalable, sub 2 μm pitch, Cu/SiCN to Cu/SiCN hybrid wafer-to-wafer bonding technology,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2017), pp. 32–34.
3.
J. D.
Messemaeker
,
S.-W.
Kim
,
M.
Stucchi
,
G.
Beyer
,
E.
Beyne
, and
K.
Croes
, “Electromigration behavior of 2 μm pitch Cu/SiCN hybrid bonds,” in Proceedings of International Interconnect Technology Conference (IEEE, 2019), pp. 1–2.
4.
H.
Ceric
,
H.
Zahedmanesh
, and
K.
Croes
, “
Analysis of electromigration failure of nano-interconnects through a combination of modeling and experimental methods
,”
Microelectron. Reliab.
100-101
,
113362
(
2019
).
5.
J. D.
Messemaeker
,
S.-W.
Kim
,
M.
Stucchi
,
G.
Beyer
,
E.
Beyne
, and
K.
Croes
, “Electromigration behavior of Cu/SiCN to Cu/SiCN hybrid bonds for 3D integrated circuits,” in Proceedings of International Solid State Devices and Materials Conference (IMEC, 2018), pp. 1–2.
6.
M. E.
Sarychev
,
Yu. V.
Zhitnikov
,
L.
Borucki
,
C.-L.
Liu
, and
T. M.
Makhviladze
, “
General model for mechanical stress evolution during electromigration
,”
J. Appl. Phys.
86
,
3068
3075
(
1999
).
7.
comsol multiphysics version 5.6, COMSOL, Inc., 2021.
8.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
(
CRC Press
,
2003
).
9.
R.
Rosenberg
and
M.
Ohring
, “
Void formation and growth during electromigration in thin films
,”
J. Appl. Phys.
42
,
5671
5679
(
1971
).
10.
R. S.
Sorbello
, “Microscopic driving forces for electromigration,” in Materials Reliability Issues in Microelectronics, edited by J. R. Lloyd, F. G. Yost, and P. S. Ho (Cambridge University Press, 1996), Vol. 225, pp. 3–10.
11.
J. P.
Dekker
,
A.
Lodder
, and
J.
van Ek
, “
Theory for the electromigration wind force in dilute alloys
,”
Phys. Rev. B
56
,
12167
12177
(
1997
).
12.
I.
Ciofi
,
P. J.
Roussel
,
Y.
Saad
,
V.
Moroz
,
C.-Y.
Hu
,
R.
Baert
,
K.
Croes
,
A.
Contino
,
K.
Vandersmissen
,
W.
Gao
,
P.
Matagne
,
M.
Badaroglu
,
C. J.
Wilson
,
D.
Mocuta
, and
Z.
Tokei
, “
Modeling of via resistance for advanced technology nodes
,”
IEEE Trans. Electron Devices
64
,
2306
2313
(
2017
).
13.
H.
Zahedmanesh
,
K.
Vanstreels
,
Q. T.
Le
,
P.
Verdonck
, and
M.
Gonzalez
, “
Mechanical integrity of nano-interconnects as brittle-matrix nano-composites
,”
Theor. Appl. Fract. Mech.
95
,
194
207
(
2018
).
14.
C. S.
Smith
, “
Grain shapes and other metallurgical applications of topology
,”
Metallogr. Microstruct. Anal.
4
,
543
567
(
2015
).
15.
V.
Sukharev
,
A.
Kteyan
,
E.
Zschech
, and
W. D.
Nix
, “
Microstructure effect on EM-induced degradations in dual inlaid copper interconnects
,”
IEEE Trans. Device Mater. Reliab.
9
,
87
97
(
2009
).
16.
H.
Zahedmanesh
,
O.
Pedreira
,
Z.
Tőkei
, and
K.
Croes
, “
Investigating the electromigration limits of Cu nano-interconnects using a novel hybrid physics-based model
,”
J. Appl. Phys.
126
,
055102
(
2019
).
17.
A.
Saleh
,
H.
Ceric
, and
H.
Zahedmanesh
, “
Void-dynamics in nano-wires and the role of microstructure investigated via a multi-scale physics-based model
,”
J. Appl. Phys.
129
,
125102
(
2021
).
18.
A. S.
Saleh
,
H.
Zahedmanesh
,
H.
Ceric
,
K.
Croes
, and
I. D.
Wolf
, “Dynamics of electromigration voids in Cu interconnects: Investigation using a physics-based model augmented by neural networks,” in Proceedings of International Interconnect Technology Conference (IEEE, 2022), pp. 25–27.
19.
L.
Xia
,
A. F.
Bower
,
Z.
Suo
, and
C.
Shih
, “
A finite element analysis of the motion and evolution of voids due to strain and electromigration induced surface diffusion
,”
J. Mech. Phys. Solids
45
,
1473
1493
(
1997
).
20.
D. N.
Bhate
,
A. F.
Bower
, and
A.
Kumar
, “
A phase field model for failure in interconnect lines due to coupled diffusion mechanisms
,”
J. Mech. Phys. Solids
50
,
2057
2083
(
2002
).
21.
H.
Mehrer
, Diffusion in Solids, Springer Series in Solid-State Sciences, edited by K. Klitzing, R. Merlin, H.-J. Queisser, and B. Keimer (Springer Science & Business Media, 2007).
22.
P. M.
Agrawal
,
B. M.
Rice
, and
D. L.
Thompson
, “
Predicting trends in rate parameters for self-diffusion on FCC metal surfaces
,”
Surf. Sci.
515
,
21
35
(
2002
).
23.
A.
Lodder
and
J.
Dekker
, “
The electromigration force in metallic bulk
,”
AIP Conf. Proc.
418
,
315
328
(
1998
).
24.
D. R.
Fridline
and
A. F.
Bower
, “
Influence of anisotropic surface diffusivity on electromigration induced void migration and evolution
,”
J. Appl. Phys.
85
,
3168
3174
(
1999
).
25.
H.
Ceric
,
R. L.
de Orio
,
J.
Cervenka
, and
S.
Selberherr
, “
A comprehensive TCAD approach for assessing electromigration reliability of modern interconnects
,”
IEEE Trans. Device Mater. Reliab.
9
,
9
19
(
2009
).
You do not currently have access to this content.