NiO/Ga2O3 heterojunction rectifiers were exposed to 1 Mrad fluences of Co-60 γ-rays either with or without reverse biases. While there is a small component of Compton electrons (600 keV), generated via the interaction of 1.17 and 1.33 MeV gamma photons with the semiconductor, which in turn can lead to displacement damage, most of the energy is lost to ionization. The effect of the exposure to radiation is a 1000× reduction in forward current and a 100× increase in reverse current in the rectifiers, which is independent of whether the devices were biased during this step. The on–off ratio is also reduced by almost five orders of magnitude. There is a slight reduction in carrier concentration in the Ga2O3 drift region, with an effective carrier removal rate of <4 cm−1. The changes in electrical characteristics are reversible by application of short forward current pulses during repeated measurement of the current–voltage characteristics at room temperature. There are no permanent total ionizing dose effects present in the rectifiers to 1 Mad fluences, which along with their resistance to displacement damage effects indicate that these devices may be well-suited to harsh terrestrial and space radiation applications if appropriate bias sequences are implemented to reverse the radiation-induced changes.

1.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
2.
K.
Shenai
,
Proc. IEEE
107
,
2308
(
2019
).
3.
D. K.
Shivani
,
A.
Ghosh
, and
M.
Kumar
,
Mater. Today Commun.
33
,
104244
(
2022
).
4.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
,
Nat. Commun.
13
,
3900
(
2022
).
5.
R. C. N.
Pilawa-Podgurski
, “
Emerging circuit techniques to utilize widebandgap semiconductors in compact, lightweight, and efficient power converters
,” in
IEDM Technical Digest
(
IEEE
,
2021
), pp.
5.6.1
5.6.4
.
6.
J.-M.
Lauenstein
,
M. C.
Casey
,
R. L.
Ladbury
,
H. S.
Kim
,
A. M.
Phan
, and
A. D.
Topper
, “
Space radiation effects on SiC power device reliability
,” in
Proceedings of the IEEE International Reliability Physics Symposium (IRPS)
(
IEEE
,
2021
), pp.
1
8
.
7.
C.
Abbate
,
G.
Busatto
,
D.
Tedesco
,
A.
Sanseverino
,
F.
Velardi
, and
J.
Wyss
,
IEEE Trans. Electron Devices
66
,
4235
(
2019
).
8.
J.-B.
Sauveplane
,
A.
Dufour
,
E.
Marcault
,
M.
Orsatelli
,
G.
Duran
,
J.
Burky
,
B.
Forgerit
,
F.
Tilhac
, and
F.-X.
Guerre
,
IEEE Trans. Nucl. Sci.
68
,
2488
(
2021
).
9.
X.
Xia
,
J. S.
Li
,
R.
Sharma
,
F.
Ren
,
M. A. J.
Rasel
,
S.
Stepanoff
,
N.
Al Mamun
,
A.
Haque
,
D. E.
Wolfe
,
S.
Modak
,
L.
Chernyak
,
M. E.
Law
,
A.
Khachatrian
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
11
,
095001
(
2022
).
10.
S. J.
Pearton
,
A.
Aitkaliyeva
,
M.
Xian
,
F.
Ren
,
A.
Khachatrian
,
A.
Ildefonso
,
Z.
Islam
,
M. A. J.
Rasel
,
A.
Haque
,
A. Y.
Polyakov
, and
J.
Kim
,
ECS J. Solid State Sci. Technol.
10
,
055008
(
2021
).
11.
J.
Zhang
,
S.
Han
,
M.
Cui
,
X.
Xu
,
W.
Li
,
H.
Xu
,
C.
Jin
,
M.
Gu
,
L.
Chen
, and
K. H. L.
Zhang
,
ACS Appl. Electron. Mater.
2
,
456
(
2020
).
12.
Y.
Lv
,
Y.
Wang
,
X.
Fu
,
S.
Dun
,
Z.
Sun
,
H.
Liu
,
X.
Zhou
,
X.
Song
,
K.
Dang
,
S.
Liang
,
J.
Zhang
,
H.
Zhou
,
Z.
Feng
,
S.
Cai
, and
Y.
Hao
,
IEEE Trans. Power Electron.
36
,
6179
(
2021
).
13.
H. H.
Gong
,
X. H.
Chen
,
Y.
Xu
,
F.-F.
Ren
,
S. L.
Gu
, and
J. D.
Ye
,
Appl. Phys. Lett.
117
,
022104
(
2020
).
14.
X.
Lu
,
X.
Zhou
,
H.
Jiang
,
K. W.
Ng
,
Z.
Chen
,
Y.
Pei
,
K.
May Lau
, and
G.
Wang
,
IEEE Electron Dev. Lett.
41
,
449
(
2020
).
15.
C.
Wang
,
H.
Gong
,
W.
Lei
,
Y.
Cai
,
Z.
Hu
,
S.
Xu
,
Z.
Liu
,
Q.
Feng
,
H.
Zhou
,
J.
Ye
,
J.
Zhang
,
R.
Zhang
, and
Y.
Hao
,
IEEE Electron Dev. Lett.
42
,
485
(
2021
).
16.
Q.
Yan
,
H.
Gong
,
J.
Zhang
,
J.
Ye
,
H.
Zhou
,
Z.
Liu
,
S.
Xu
,
C.
Wang
,
Z.
Hu
,
Q.
Feng
,
J.
Ning
,
C.
Zhang
,
P.
Ma
,
R.
Zhang
, and
Y.
Hao
,
Appl. Phys. Lett.
118
,
122102
(
2021
).
17.
H.
Gong
,
F.
Zhou
,
W.
Xu
,
X.
Yu
,
Y.
Xu
,
Y.
Yang
,
F.-f.
Ren
,
S.
Gu
,
Y.
Zheng
,
R.
Zhang
,
H.
Lu
, and
J.
Ye
,
IEEE Trans. Power Electron.
36
,
12213
(
2021
).
18.
H. H.
Gong
,
X. X.
Yu
,
Y.
Xu
,
X. H.
Chen
,
Y.
Kuang
,
Y. J.
Lv
,
Y.
Yang
,
F.-F.
Ren
,
Z. H.
Feng
,
S. L.
Gu
,
Y. D.
Zheng
,
R.
Zhang
, and
J. D.
Ye
,
Appl. Phys. Lett.
118
,
202102
(
2021
).
19.
W.
Hao
,
Q.
He
,
K.
Zhou
,
G.
Xu
,
W.
Xiong
,
X.
Zhou
,
G.
Jian
,
C.
Chen
,
X.
Zhao
, and
S.
Long
,
Appl. Phys. Lett.
118
,
043501
(
2021
).
20.
F.
Zhou
,
H.
Gong
,
W.
Xu
,
X.
Yu
,
Y.
Xu
,
Y.
Yang
,
F.-f.
Ren
,
S.
Gu
,
Y.
Zheng
,
R.
Zhang
,
J.
Ye
, and
H.
Lu
,
IEEE Trans. Power Electron.
37
,
1223
(
2022
).
21.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
,
Nat. Commun.
13
,
3900
(
2022
).
22.
Q.
Yan
,
H.
Gong
,
H.
Zhou
,
J.
Zhang
,
J.
Ye
,
Z.
Liu
,
C.
Wang
,
X.
Zheng
,
R.
Zhang
, and
Y.
Hao
,
Appl. Phys. Lett.
120
,
092106
(
2022
).
23.
Y. J.
Lv
,
Y. G.
Wang
,
X. C.
Fu
,
S. B.
Dun
,
Z. F.
Sun
,
H. Y.
Liu
,
X. Y.
Zhou
,
X. B.
Song
,
K.
Dang
,
S. X.
Liang
,
J. C.
Zhang
,
H.
Zhou
,
Z. H.
Feng
,
S. J.
Cai
, and
Y.
Hao
,
IEEE Trans. Power Electron.
36
,
6179
(
2021
).
24.
Y.
Wang
,
H.
Gong
,
Y.
Lv
,
X.
Fu
,
S.
Dun
,
T.
Han
,
H.
Liu
,
X.
Zhou
,
S.
Liang
,
J.
Ye
,
R.
Zhang
,
A.
Bu
,
S.
Cai
, and
Z.
Feng
,
IEEE Trans. Power Electron.
37
,
3743
(
2022
).
25.
J.-S.
Li
,
C.-C.
Chiang
,
X.
Xia
,
F.
Ren
,
H.
Kim
, and
S. J.
Pearton
,
Appl. Phys. Lett.
121
,
042105
(
2022
).
26.
X.
Xia
,
J. S.
Li
,
C. C.
Chiang
,
T. J.
Yoo
,
F.
Ren
,
H.
Kim
, and
S. J.
Pearton
,
J. Phys. D
55
,
385105
(
2022
).
27.
G. P.
Summers
,
E. A.
Burke
,
P.
Shapiro
,
S. R.
Messenger
, and
R. J.
Walters
,
IEEE Trans. Nucl. Sci.
40
,
1372
(
1993
).
28.
See http://escies.org/escc-specs/published/22900.pdf for “Total Dose Steady-State Irradiation Test Method,” European Space Components Coordination Basic Specification No. 22900 (2016).
29.
R. D.
Evans
,
The Atomic Nucleus
(
Tata McGraw-Hill
,
Bombay
,
1955
).
30.
E.
El Allam
,
C.
Inguimbert
,
A.
Meulenberg
,
A.
Jorio
, and
I.
Zorkani
,
J. Appl. Phys.
123
,
095703
(
2018
).
31.
D. M.
Fleetwood
,
IEEE Trans. Nucl. Sci.
60
,
1706
(
2013
).
32.
T. R.
Oldham
and
F. B.
McLean
,
IEEE Trans. Nucl. Sci.
50
,
483
(
2003
).
33.
J. R.
Schwank
,
M. R.
Shaneyfelt
,
D. M.
Fleetwood
,
J. A.
Felix
,
P. E.
Dodd
,
P.
Pailet
, and
V.
Ferlet-Cavrois
,
IEEE Trans. Nucl. Sci.
55
,
1833
(
2008
).
34.
G. C.
Messenger
and
M. S.
Ash
,
The Effects of Radiation on Electronic Systems
(
Van Nostrand Reinhold Co.
,
New York
,
1986
).
35.
R.
Baumann
and
K.
Kruckmeyer
,
Radiation Handbook for Electronics
(
Texas Instruments
,
Dallas
,
TX
,
2013
); see https://www.ti.com/seclit/eb/sgzy002a/sgzy002a.pdf.
36.
E. B.
Yakimov
,
A. Y.
Polyakov
,
I. V.
Shchemerov
,
N. B.
Smirnov
,
A. A.
Vasilev
,
P. S.
Vergeles
,
E. E.
Yakimov
,
A. V.
Chernykh
,
F.
Ren
, and
S. J.
Pearton
,
Appl. Phys. Lett.
118
,
202106
(
2021
).
37.
J. A.
Spencer
,
A. L.
Mock
,
A. G.
Jacobs
,
M.
Schubert
,
Y.
Zhang
, and
M. J.
Tadjer
,
Appl. Phys. Rev.
9
,
011315
(
2022
).
38.
J. C.
Yang
,
G. J.
Koller
,
C.
Fares
,
F.
Ren
,
S. J.
Pearton
,
J.
Bae
, and
J.
Kim
,
ECS J. Solid State Sci. Technol.
8
,
Q3041
(
2019
).
39.
J.
Lee
,
E.
Flitsiyan
,
L.
Chernyak
,
J.
Yang
,
F.
Ren
,
S. J.
Pearton
,
B.
Meyler
, and
Y. J.
Salzman
,
Appl. Phys. Lett.
112
,
082104
(
2018
).
40.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
P. B.
Lagov
, and
T. V.
Kulevoy
,
APL Mater.
6
,
096102
(
2018
).
41.
S.
Modak
,
L.
Chernyak
,
S.
Khodorov
,
I.
Lubomirsky
,
A.
Ruzin
,
M.
Xian
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
9
,
045018
(
2020
).
42.
S.
Modak
,
A.
Schulte
,
C.
Sartel
,
V.
Sallet
,
Y.
Dumont
,
E.
Chikoidze
,
X.
Xia
,
F.
Ren
,
S. J.
Pearton
,
A.
Ruzin
, and
L.
Chernyak
,
Appl. Phys. Lett.
120
,
233503
(
2022
).
43.
S.
Modak
,
J.
Lee
,
L.
Chernyak
,
J.
Yang
,
F.
Ren
,
S. J.
Pearton
,
S.
Khodorov
, and
I.
Lubomirsky
,
AIP Adv.
9
,
015127
(
2019
).
44.
S.
Modak
,
L.
Chernyak
,
S.
Khodorov
,
I.
Lubomirsky
,
J.
Yang
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
Q3050
(
2019
).
45.
S.
Modak
,
L.
Chernyak
,
M. H.
Xian
,
F.
Ren
,
S. J.
Pearton
,
S.
Khodorov
,
I.
Lubomirsky
,
A.
Ruzin
, and
Z.
Dashevsky
,
J. Appl. Phys.
128
,
085702
(
2020
).
46.
F. B.
McLean
and
T. R.
Oldham
, “Basic mechanisms of radiation effects in electronic materials and devices,” Final report, September 1986–September 1987, n.p., USA, 1987; see https://www.osti.gov/biblio/5646360.
47.
D. M.
Fleetwood
,
IEEE Trans. Nucl. Sci.
68
,
509
(
2021
).
48.
V.
Ferlet-Cavrois
,
T.
Colladant
,
P.
Paillet
,
J. L.
Leray
,
O.
Musseau
,
J. R.
Schwank
,
M. R.
Shaneyfelt
,
J. L.
Pelloie
, and
J.
du Port de Poncharra
,
IEEE Trans. Nucl. Sci.
47
,
2183
(
2000
).
49.
P. S.
Winokur
,
H. E.
Boesch
, Jr.
,
J. M.
McGarrity
, and
F. B.
McLean
,
IEEE Trans. Nucl. Sci.
24
,
2113
(
1977
).
50.
P. S.
Winokur
,
H. E.
Boesch
, Jr.
,
J. M.
McGarrity
, and
F. B.
McLean
,
J. Appl. Phys.
50
,
3492
(
1979
).
51.
F. B.
McLean
,
IEEE Trans. Nucl. Sci.
27
,
1651
(
1980
).
52.
S. T.
Pantelides
,
S. N.
Rashkeev
,
R.
Buczko
,
D. M.
Fleetwood
, and
R. D.
Schrimpf
,
IEEE Trans. Nucl. Sci.
47
,
2262
(
2000
).
53.
S. N.
Rashkeev
,
D. M.
Fleetwood
,
R. D.
Schrimpf
, and
S. T.
Pantelides
,
IEEE Trans. Nucl. Sci.
48
,
2086
(
2001
).
54.
D. M.
Fleetwood
,
Microelectron. Reliab.
42
,
523
(
2002
).
55.
M. A. J.
Rasel
,
S.
Stepanoff
,
A.
Haque
,
D. E.
Wolfe
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
11
,
075002
(
2022
).
You do not currently have access to this content.