We have theoretically explored the electronic and thermoelectric properties of the C2P4 monolayer with the interface of density functional theory and semi-classical transport theory. Our calculation shows a high Seebeck coefficient and low electronic thermal conductivity in the vicinity of zero chemical potential (μ = 0), resulting in a good power factor (PF) and a high figure of merit (ZT). More particularly, the electronic figure of merit (ZTe) exhibits two high peak values around μ = 0 due to the significant contribution of thermoelectric parameters. Furthermore, ZTe decreases by increasing the temperature, giving a peak value of 0.98 in the negative chemical potential (μ), whereas, for μ > 0, the peak value increases slightly with temperature. Additionally, the ZTe peak value is robust against ±10% of uni- and biaxial strains at room temperature. To make our calculation more realistic, we add phonon contributions to the thermal conductivity in pristine C2P4 and calculate the total ZT. We have found that phonon contribution dominates at low temperatures, and the ZT peak is reduced to 0.78. These optimal thermoelectric parameters of the C2P4 monolayer may be suitable for demonstrating the feasibility of a good thermoelectric material.

1.
I.
Dincer
and
M. A.
Rosen
,
Int. J. Energy Res.
22
,
1305
(
1998
).
2.
M.
Rull-Bravo
,
A.
Moure
,
J. F.
Fernández
, and
M.
Martín-González
,
RSC Adv.
5
,
41653
(
2015
).
3.
G.
Tan
,
L.-D.
Zhao
, and
M. G.
Kanatzidis
,
Chem. Rev.
116
,
12123
(
2016
).
4.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
).
5.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O’quinn
,
Nature
413
,
597
(
2001
).
6.
D.
Vashaee
and
A.
Shakouri
,
Phys. Rev. Lett.
92
,
106103
(
2004
).
7.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
X.
Sun
,
Z.
Zhang
,
S. B.
Cronin
, and
T.
Koga
,
Phys. Solid State
41
,
679
(
1999
).
8.
P.
Pichanusakorn
,
Y. J.
Kuang
,
C.
Patel
,
C. W.
Tu
, and
P. H.
Bandaru
,
Phys. Rev. B
86
,
085314
(
2012
).
9.
S.
Ouardi
,
G. H.
Fecher
,
C.
Felser
,
M.
Schwall
,
S. S.
Naghavi
,
A.
Gloskovskii
,
B.
Balke
,
J.
Hamrle
,
K.
Postava
,
J.
Pištora
,
S.
Ueda
, and
K.
Kobayashi
,
Phys. Rev. B
86
,
045116
(
2012
).
10.
H.
Kim
and
M.
Kaviany
,
Phys. Rev. B
86
,
045213
(
2012
).
11.
S.
Sharma
,
S.
Kumar
, and
U.
Schwingenschlögl
,
Phys. Rev. Appl.
8
,
044013
(
2017
).
12.
X.
Chen
,
Y.
Huang
,
J.
Liu
,
H.
Yuan
, and
H.
Chen
,
ACS Omega.
4
,
17773
(
2019
).
13.
A.
Shafique
,
A.
Samad
, and
Y.-H.
Shin
,
Phys. Chem. Chem. Phys.
19
,
20677
(
2017
).
14.
R. N.
Somaiya
,
Y. A.
Sonvane
, and
S. K.
Gupta
,
Phys. Chem. Chem. Phys.
22
,
3990
(
2020
).
15.
Y.
Pei
,
H.
Wang
, and
G. J.
Snyder
,
Adv. Mater.
24
,
6125
(
2012
).
16.
V.
Dusastre
,
Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles From Nature Publishing Group
(
World Scientific
,
2010
).
17.
Y.
Pei
,
H.
Wang
, and
G.
Snyder
,
Adv. Mater.
24
,
6124
(
2012
).
18.
M.
Zare
,
B. Z.
Rameshti
,
F. G.
Ghamsari
, and
R.
Asgari
,
Phys. Rev. B
95
,
045422
(
2017
).
19.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
20.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
(
2014
).
21.
L.-D.
Zhao
,
S.-H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
508
,
373
(
2014
).
22.
P.-P.
Shang
,
J.
Dong
,
J.
Pei
,
F.-H.
Sun
,
Y.
Pan
,
H.
Tang
,
B.-P.
Zhang
,
L.-D.
Zhao
, and
J.-F.
Li
,
Research
2019, 9253132.
23.
W.
Huang
,
H.
Da
, and
G.
Liang
,
J. Appl. Phys.
113
,
104304
(
2013
).
24.
L.
Kou
,
C.
Chen
, and
S. C.
Smith
,
J. Phys. Chem. Lett.
6
,
2794
(
2015
).
25.
D.
Zhao
and
G.
Tan
,
Appl. Thermal Eng.
66
,
15
(
2014
).
26.
F.
Wang
,
Z.
Wang
,
L.
Yin
,
R.
Cheng
,
J.
Wang
,
Y.
Wen
,
T. A.
Shifa
,
F.
Wang
,
Y.
Zhang
,
X.
Zhan
, and
J.
He
,
Chem. Soc. Rev.
47
,
6296
(
2018
).
27.
H.
Zhang
,
H.-M.
Cheng
, and
P.
Ye
,
Chem. Soc. Rev.
47
,
6009
(
2018
).
28.
H.
Wang
,
G.
Luo
,
C.
Tan
,
C.
Xiong
,
Z.
Guo
,
Y.
Yin
,
B.
Yu
,
Y.
Xiao
,
H.
Hu
,
G.
Liu
,
X.
Tan
, and
J. G.
Noudem
,
ACS Appl. Mater. Interfaces
12
,
31612
(
2020
).
29.
I. T.
Witting
,
T. C.
Chasapis
,
F.
Ricci
,
M.
Peters
,
N. A.
Heinz
,
G.
Hautier
, and
G. J.
Snyder
,
Adv. Electron. Mater.
5
,
1800904
(
2019
).
30.
X.
Guan
,
P.
Lu
,
L.
Wu
,
L.
Han
,
G.
Liu
,
Y.
Song
, and
S.
Wang
,
J. Alloys Compd.
643
,
116
(
2015
).
31.
D.
Singh
,
V.
Shukla
, and
R.
Ahuja
,
Phys. Rev. B
102
,
075444
(
2020
).
32.
N.
Khossossi
,
D.
Singh
,
W.
Luo
, and
R.
Ahuja
,
Energy Technol.
10
,
2200400
(
2022
).
33.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
34.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
35.
H.
Liu
,
A. T.
Neal
,
Z.
Zhu
,
Z.
Luo
,
X.
Xu
,
D.
Tománek
, and
P. D.
Ye
,
ACS Nano
8
,
4033
(
2014
).
36.
H. Y.
Lv
,
W. J.
Lu
,
D. F.
Shao
, and
Y. P.
Sun
,
Phys. Rev. B
90
,
085433
(
2014
).
37.
V.
Tran
,
R.
Soklaski
,
Y.
Liang
, and
L.
Yang
,
Phys. Rev. B
89
,
235319
(
2014
).
38.
R.
Fei
,
A.
Faghaninia
,
R.
Soklaski
,
J.-A.
Yan
,
C.
Lo
, and
L.
Yang
,
Nano Lett.
14
,
6393
(
2014
).
39.
J. D.
Wood
,
S. A.
Wells
,
D.
Jariwala
,
K.-S.
Chen
,
E.
Cho
,
V. K.
Sangwan
,
X.
Liu
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
,
Nano Lett.
14
,
6964
(
2014
).
40.
Y.
Jing
,
Y.
Ma
,
Y.
Li
, and
T.
Heine
,
Nano Lett.
17
,
1833
(
2017
).
41.
N.
Lu
,
Z.
Zhuo
,
H.
Guo
,
P.
Wu
,
W.
Fa
,
X.
Wu
, and
X. C.
Zeng
,
J. Phys. Chem. Lett.
9
,
1728
(
2018
).
42.
E.
Jiang
,
X.
Zhu
,
T.
Ouyang
,
C.
Tang
,
J.
Li
,
C.
He
,
C.
Zhang
, and
J.
Zhong
,
J. Appl. Phys.
126
,
185106
(
2019
).
43.
J.
Guan
,
D.
Liu
,
Z.
Zhu
, and
D.
Tománek
,
Nano Lett.
16
,
3247
(
2016
).
44.
K.
Rajput
and
D. R.
Roy
,
Phys. Chem. Chem. Phys.
22
,
8625
(
2020
).
45.
K.
Fan
,
Y.
Ying
,
X.
Luo
, and
H.
Huang
,
Phys. Chem. Chem. Phys.
22
,
16665
(
2020
).
46.
X.
Fu
,
Y.
Xie
, and
Y.
Chen
,
Comput. Mater. Sci.
144
,
70
(
2018
).
47.
J.
Liang
,
Y.
Chen
,
S.
Bu
,
S.
Song
,
J.
Yang
,
M.
Wang
, and
Q.
Yuan
,
ACS Appl. Nano Mater.
5
,
6972
(
2022
).
48.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
49.
G. K. H.
Madsen
and
D. J.
Singh
,
Comput. Phys. Commun.
175
,
67
(
2006
).
50.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
,
72
(
1950
).
51.
P.
Mishra
,
D.
Singh
,
Y.
Sonvane
, and
R.
Ahuja
,
Sust. Energy Fuels
4
,
2363
(
2020
).
52.
G.
Wang
,
R.
Pandey
, and
S. P.
Karna
,
Nanoscale
8
,
8819
(
2016
).
53.
S.
Bruzzone
and
G.
Fiori
,
Appl. Phys. Lett.
99
,
222108
(
2011
).
54.
A.
Togo
,
L.
Chaput
, and
I.
Tanaka
,
Phys. Rev. B
91
,
094306
(
2015
).
55.
D.
Guo
,
C.
Hu
,
Y.
Xi
, and
K.
Zhang
,
J. Phys. Chem. C
117
,
21597
(
2013
).
56.
B.
Xu
and
M. J.
Verstraete
,
Phys. Rev. Lett.
112
,
196603
(
2014
).
57.
M. E.
Gruner
,
U.
Eckern
, and
R.
Pentcheva
,
Phys. Rev. B
92
,
235140
(
2015
).
58.
J.
Mao
,
Z.
Liu
,
J.
Zhou
,
H.
Zhu
,
Q.
Zhang
,
G.
Chen
, and
Z.
Ren
,
Adv. Phys.
67
,
69
(
2018
).
59.
Y.
Zhou
and
L.-D.
Zhao
,
Adv. Mater.
29
,
1702676
(
2017
).
60.
S.
Chandra
and
K.
Biswas
,
J. Am. Chem. Soc.
141
,
6141
(
2019
).
61.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
,
ACS Nano
5
,
9703
(
2011
).
62.
A.
Farhan
,
C. F.
Petersen
,
S.
Dhuey
,
L.
Anghinolfi
,
Q. H.
Qin
,
M.
Saccone
,
S.
Velten
,
C.
Wuth
,
S.
Gliga
,
P.
Mellado
,
M. J.
Alava
,
A.
Scholl
, and
S.
van Dijken
,
Nat. Commun.
8
,
995
(
2017
).
63.
H.
Lv
,
Z.
Zhuo
, and
X.
Wu
,
Inorganic Two-Dimensional Nanomaterials: Fundamental Understanding, Characterizations and Energy Applications
(
The Royal Society of Chemistry
,
2017
), p.
1
.
64.
J.
Gou
,
L.
Kong
,
H.
Li
,
Q.
Zhong
,
W.
Li
,
P.
Cheng
,
L.
Chen
, and
K.
Wu
,
Phys. Rev. Mater.
1
,
054004
(
2017
).
65.
K. V.
Sopiha
,
O. I.
Malyi
, and
C.
Persson
,
ACS Appl. Nano Mater.
2
,
5614
(
2019
).
66.
G.
Guo
and
G.
Bi
,
Micro Nano Lett.
13
,
600
(
2018
).
67.
W.
Fa
and
X. C.
Zeng
,
Chem. Commun.
50
,
9126
(
2014
).
68.
D. P.
Spitzer
,
J. Phys. Chem. Solids
31
,
19
(
1970
).
69.
D. L.
Nika
,
E. P.
Pokatilov
,
A. S.
Askerov
, and
A. A.
Balandin
,
Phys. Rev. B
79
,
155413
(
2009
).
70.
X.
Tan
,
H.
Shao
,
T.
Hu
,
G.
Liu
,
J.
Jiang
, and
H.
Jiang
,
Phys. Chem. Chem. Phys.
17
,
22872
(
2015
).
71.
G.
Qin
,
Q.-B.
Yan
,
Z.
Qin
,
S.-Y.
Yue
,
M.
Hu
, and
G.
Su
,
Phys. Chem. Chem. Phys.
17
,
4854
(
2015
).
72.
S.
Lee
,
S.-H.
Kang
, and
Y.-K.
Kwon
,
Sci. Rep.
9
,
5149
(
2019
).
73.
A.
Reshak
,
S. A.
Khan
, and
S.
Auluck
,
J. Mater. Chem. C
2
,
2346
(
2014
).
74.
B.
Liao
,
J.
Zhou
,
B.
Qiu
,
M. S.
Dresselhaus
, and
G.
Chen
,
Phys. Rev. B
91
,
235419
(
2015
).
75.
D.
Singh
,
S.
Kansara
,
S. K.
Gupta
, and
Y.
Sonvane
,
J. Mater. Sci.
53
,
8314
(
2018
).

Supplementary Material

You do not currently have access to this content.