Complex intermetallics usually exist as second phases in metal alloys. How these second phases can affect the thermal conductivity of alloys is generally unknown because the intrinsic thermal transport properties of these complex intermetallic compounds are quite less explored. In this work, we propose a computational framework based on first-principles calculations to study the electron and phonon thermal transport in complex intermetallics. Two typical intermetallics, i.e., MgZn2 and Mg4Zn7, are studied as prototypes. The rigorous mode-level first-principles calculations are first carried out to study the thermal transport of MgZn2. The calculations not only provide accurate thermal conductivity results, but also allow to prove that the constant relaxation time approximation and the Slack model work quite well in complex intermetallics. Then these two models are combined with first-principles calculations to predict the thermal transport properties for Mg4Zn7. Our results show that the directional average thermal conductivities for MgZn2 and Mg4Zn7 are 53.9 and 21.9 W/mK, significantly smaller than those of their elemental counterparts. Electrons are found to be the main heat carriers in these compounds, leading to a nearly temperature-independent thermal conductivity. Phonon thermal conductivity is negligible due to large unit cells and weak metallic bondings. Our work provides reliable thermal conductivity values for MgZn2 and Mg4Zn7. The computational framework developed in this work can also be further extended to study the electrical and thermal transport of other complex intermetallics.

1.
J. C.
Fisher
, “
On the strength of solid solution alloys
,”
Acta Metall.
2
,
9
(
1954
).
2.
Y.
Xu
,
F.
Gensch
,
Z.
Ren
,
K. U.
Kainer
, and
N.
Hort
, “
Effects of Gd solutes on hardness and yield strength of Mg alloys
,”
Prog. Nat. Sci.: Mater. Int.
28
,
724
(
2018
).
3.
G.
Li
,
J.
Zhang
,
R.
Wu
,
Y.
Feng
,
S.
Liu
,
X.
Wang
,
Y.
Jiao
,
Q.
Yang
, and
J.
Meng
, “
Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment
,”
J. Mater. Sci. Technol.
34
,
1076
(
2018
).
4.
B.
Smola
,
I.
Stulíková
,
F.
von Buch
, and
B. L.
Mordike
, “
Structural aspects of high performance Mg alloys design
,”
Mater. Sci. Eng. A
324
,
113
(
2002
).
5.
W.
Xu
,
N.
Birbilis
,
G.
Sha
,
Y.
Wang
,
J. E.
Daniels
,
Y.
Xiao
, and
M.
Ferry
, “
A high-specific-strength and corrosion-resistant magnesium alloy
,”
Nat. Mater.
14
,
1229
(
2015
).
6.
K. D.
Ralston
,
N.
Birbilis
,
M. K.
Cavanaugh
,
M.
Weyland
,
B. C.
Muddle
, and
R. K. W.
Marceau
, “
Role of nanostructure in pitting of Al–Cu–Mg alloys
,”
Electrochim. Acta
55
,
7834
(
2010
).
7.
S.
Li
,
X.
Yang
,
J.
Hou
, and
W.
Du
, “
A review on thermal conductivity of magnesium and its alloys
,”
J. Magnesium Alloys
8
,
78
(
2020
).
8.
T.
Ying
,
M. Y.
Zheng
,
Z. T.
Li
, and
X. G.
Qiao
, “
Thermal conductivity of as-cast and as-extruded binary Mg–Al alloys
,”
J. Alloys Compd.
608
,
19
(
2014
).
9.
H.
Pan
,
F.
Pan
,
R.
Yang
,
J.
Peng
,
C.
Zhao
,
J.
She
,
Z.
Gao
, and
A.
Tang
, “
Thermal and electrical conductivity of binary magnesium alloys
,”
J. Mater. Sci.
49
,
3107
(
2014
).
10.
C.
Su
,
D.
Li
,
A. A.
Luo
,
T.
Ying
, and
X.
Zeng
, “
Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study
,”
J. Alloys Compd.
747
,
431
(
2018
).
11.
C.
Su
,
D.
Li
,
T.
Ying
,
L.
Zhou
,
L.
Li
, and
X.
Zeng
, “
Effect of Nd content and heat treatment on the thermal conductivity of MgNd alloys
,”
J. Alloys Compd.
685
,
114
(
2016
).
12.
B.
Li
,
L.
Hou
,
R.
Wu
,
J.
Zhang
,
X.
Li
,
M.
Zhang
,
A.
Dong
, and
B.
Sun
, “
Microstructure and thermal conductivity of Mg-2Zn-Zr alloy
,”
J. Alloys Compd.
722
,
772
(
2017
).
13.
M.
Yamasaki
and
Y.
Kawamura
, “
Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase
,”
Scr. Mater.
60
,
264
(
2009
).
14.
H.
Gomi
and
T.
Yoshino
, “
Impurity resistivity of fcc and hcp Fe-based alloys: Thermal stratification at the Top of the core of super-earths
,”
Front. Earth Sci.
6
,
217
(
2018
).
15.
G. D.
Samolyuk
,
S.
Mu
,
A. F.
May
,
B. C.
Sales
,
S.
Wimmer
,
S.
Mankovsky
,
H.
Ebert
, and
G. M.
Stocks
, “
Temperature dependent electronic transport in concentrated solid solutions of the 3d-transition metals Ni, Fe, Co and Cr from first principles
,”
Phys. Rev. B
98
,
165141
(
2018
).
16.
T.
Aizawa
and
R.
Song
, “
Mechanically induced reaction for solid-state synthesis of Mg2Si and Mg2Sn
,”
Intermetallics
14
,
382
(
2006
).
17.
Y.
Liu
,
D.
Chabane
, and
O.
Elkedim
, “
Intermetallic compounds synthesized by mechanical alloying for solid-state hydrogen storage: A review
,”
Energies
14
, 5758 (
2021
).
18.
L.
Zhong
,
Y.
Wang
,
M.
Gong
,
X.
Zheng
, and
J.
Peng
, “
Effects of precipitates and its interface on thermal conductivity of Mg–12Gd alloy during aging treatment
,”
Mater. Charact.
138
,
284
(
2018
).
19.
A. J. H.
McGaughey
 et al, in
Advances in Heat Transfer
, edited by
G. A.
Greene
(
Elsevier
,
2006
), p.
169
.
20.
F.
Müller-Plathe
, “
A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
,”
J. Chem. Phys.
106
,
6082
(
1997
).
21.
S.-Y.
Yue
,
X.
Zhang
,
S.
Stackhouse
,
G.
Qin
,
E.
Di Napoli
, and
M.
Hu
, “
Methodology for determining the electronic thermal conductivity of metals via direct nonequilibrium ab initio molecular dynamics
,”
Phys. Rev. B
94
,
075149
(
2016
).
22.
F.
Giustino
,
M. L.
Cohen
, and
S. G.
Louie
, “
Electron-phonon interaction using Wannier functions
,”
Phys. Rev. B
76
,
165108
(
2007
).
23.
A. A.
Mostofi
,
J. R.
Yates
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
, “
Wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
178
,
685
(
2008
).
24.
T.-H.
Liu
,
J.
Zhou
,
M.
Li
,
Z.
Ding
,
Q.
Song
,
B.
Liao
,
L.
Fu
, and
G.
Chen
, “
Electron mean-free-path filtering in Dirac material for improved thermoelectric performance
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
879
(
2018
).
25.
Y.
Chen
,
J.
Ma
, and
W.
Li
, “
Understanding the thermal conductivity and Lorenz number in tungsten from first principles
,”
Phys. Rev. B
99
,
020305
(
2019
).
26.
A.
Jain
and
A. J. H.
McGaughey
, “
Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles
,”
Phys. Rev. B
93
,
081206
(
2016
).
27.
S.
Li
,
Z.
Tong
,
X.
Zhang
, and
H.
Bao
, “
Thermal conductivity and Lorenz ratio of metals at intermediate temperatures with mode-level first-principles analysis
,”
Phys. Rev. B
102
,
174306
(
2020
).
28.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
ShengBTE: A solver of the Boltzmann transport equation for phonons
,”
Comput. Phys. Commun.
185
,
1747
(
2014
).
29.
Z.
Tong
,
S.
Li
,
X.
Ruan
, and
H.
Bao
, “
Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals
,”
Phys. Rev. B
100
,
144306
(
2019
).
30.
Y.
Wang
,
Z.
Lu
, and
X.
Ruan
, “
First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering
,”
J. Appl. Phys.
119
,
225109
(
2016
).
31.
B.
Liao
,
B.
Qiu
,
J.
Zhou
,
S.
Huberman
,
K.
Esfarjani
, and
G.
Chen
, “
Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: A first-principles study
,”
Phys. Rev. Lett.
114
,
115901
(
2015
).
32.
A.
Giri
,
M. V.
Tokina
,
O. V.
Prezhdo
, and
P. E.
Hopkins
, “
Electron–phonon coupling and related transport properties of metals and intermetallic alloys from first principles
,”
Mater. Today Phys.
12
,
100175
(
2020
).
33.
Z.
Tong
and
H.
Bao
, “
Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations
,”
Int. J. Heat Mass Transf.
117
,
972
(
2018
).
34.
S.
Wang
,
Y.
Zhao
,
H.
Guo
,
F.
Lan
, and
H.
Hou
, “
Mechanical and thermal conductivity properties of enhanced phases in Mg-Zn-Zr system from first principles
,”
Materials
11
, 2010 (
2018
).
35.
Y. Z.
Liu
,
B. C.
Zheng
,
Y. X.
Jian
,
L.
Zhang
,
Y. L.
Yi
, and
W.
Li
, “
Anisotropic in elasticity, sound velocity and minimum thermal conductivity of Al–Cu intermetallic compounds
,”
Intermetallics
124
,
106880
(
2020
).
36.
D. R.
Clarke
, “
Materials selection guidelines for low thermal conductivity thermal barrier coatings
,”
Surf. Coat. Technol.
163–164
,
67
(
2003
).
37.
G. K. H.
Madsen
and
D. J.
Singh
, “
Boltztrap. A code for calculating band-structure dependent quantities
,”
Comput. Phys. Commun.
175
,
67
(
2006
).
38.
G.
Pizzi
,
D.
Volja
,
B.
Kozinsky
,
M.
Fornari
, and
N.
Marzari
, “
Boltzwann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis
,”
Comput. Phys. Commun.
185
,
422
(
2014
).
39.
G. A.
Slack
, in
Solid State Physics
, edited by
H.
Ehrenreich
,
F.
Seitz
, and
D.
Turnbull
(
Academic Press
,
1979
), p.
1
.
40.
G.
Chen
,
Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons
(
Oxford University Press
,
2005
).
41.
T. M.
Tritt
,
Thermal Conductivity: Theory, Properties, and Applications
(
Springer Science & Business Media
,
2005
).
42.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys. Condens. Matter
32
,
165902
(
2020
).
43.
J.
Bardeen
and
D.
Pines
, “
Electron-phonon interaction in metals
,”
Phys. Rev.
99
,
1140
(
1955
).
44.
T. M.
Rice
, “
The effects of electron-electron interaction on the properties of metals
,”
Ann. Phys.
31
,
100
(
1965
).
45.
J. S.
Langer
, “
Theory of impurity resistance in metals
,”
Phys. Rev.
120
,
714
(
1960
).
46.
S.
Poncé
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
(
2016
).
47.
S.
Li
,
X.
Zhang
, and
H.
Bao
, “
Thermal transport by electrons and phonons in PdTe2: An ab initio study
,”
Phys. Chem. Chem. Phys.
23
,
5956
(
2021
).
48.
B.
Ryu
and
M.-W.
Oh
, “
Computational simulations of thermoelectric transport properties
,”
J. Korean Ceram. Soc
53
,
273
(
2016
).
49.
A. M.
Ganose
,
J.
Park
,
A.
Faghaninia
,
R.
Woods-Robinson
,
K. A.
Persson
, and
A.
Jain
, “
Efficient calculation of carrier scattering rates from first principles
,”
Nat. Commun.
12
,
2222
(
2021
).
50.
S.-i.
Tamura
,
Y.
Tanaka
, and
H. J.
Maris
, “
Phonon group velocity and thermal conduction in superlattices
,”
Phys. Rev. B
60
,
2627
(
1999
).
51.
D. A.
Broido
,
M.
Malorny
,
G.
Birner
,
N.
Mingo
, and
D. A.
Stewart
, “
Intrinsic lattice thermal conductivity of semiconductors from first principles
,”
Appl. Phys. Lett.
91
,
231922
(
2007
).
52.
C.
Li
,
N. K.
Ravichandran
,
L.
Lindsay
, and
D.
Broido
, “
Fermi surface nesting and phonon frequency gap drive anomalous thermal transport
,”
Phys. Rev. Lett.
121
,
175901
(
2018
).
53.
S.
Li
,
A.
Wang
,
Y.
Hu
,
X.
Gu
,
Z.
Tong
, and
H.
Bao
, “
Anomalous thermal transport in metallic transition-metal nitrides originated from strong electron–phonon interactions
,”
Mater. Today Phys.
15
,
100256
(
2020
).
54.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Oxford University Press
,
2001
).
55.
A. J. H.
McGaughey
,
A.
Jain
,
H.-Y.
Kim
, and
B.
Fu
, “
Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation
,”
J. Appl. Phys.
125
,
011101
(
2019
).
56.
P.
Nath
,
J. J.
Plata
,
D.
Usanmaz
,
C.
Toher
,
M.
Fornari
,
M.
Buongiorno Nardelli
, and
S.
Curtarolo
, “
High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity
,”
Scr. Mater.
129
,
88
(
2017
).
57.
O. L.
Anderson
, “
A simplified method for calculating the Debye temperature from elastic constants
,”
J. Phys. Chem. Solids
24
,
909
(
1963
).
58.
C.
Toher
,
J. J.
Plata
,
O.
Levy
,
M.
de Jong
,
M.
Asta
,
M. B.
Nardelli
, and
S.
Curtarolo
, “
High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model
,”
Phys. Rev. B
90
,
174107
(
2014
).
59.
J.-P.
Poirier
,
Introduction to the Physics of the Earth’s Interior
(
Cambridge University Press
,
2000
).
60.
M. A.
Blanco
,
A. M.
Pendás
,
E.
Francisco
,
J. M.
Recio
, and
R.
Franco
, “
Thermodynamical properties of solids from microscopic theory: Applications to MgF2 and Al2O3
,”
J. Mol. Struct.: Theochem.
368
,
245
(
1996
).
61.
M. A.
Blanco
,
E.
Francisco
, and
V.
Luaña
, “
GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model
,”
Comput. Phys. Commun.
158
,
57
(
2004
).
62.
E.
Francisco
,
J. M.
Recio
,
M. A.
Blanco
,
A. M.
Pendás
, and
A.
Costales
, “
Quantum-mechanical study of thermodynamic and bonding properties of MgF2
,”
J. Phys. Chem. A
102
,
1595
(
1998
).
63.
F.
Birch
, “
Finite elastic strain of cubic crystals
,”
Phys. Rev.
71
,
809
(
1947
).
64.
F. D.
Murnaghan
, “
The compressibility of media under extreme pressures
,”
Proc. Natl. Acad. Sci. U.S.A.
30
,
244
(
1944
).
65.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
66.
S.
Wang
,
Y.
Zhao
,
H.
Hou
,
Z.
Wen
,
P.
Zhang
, and
J.
Liang
, “
Effect of anti-site point defects on the mechanical and thermodynamic properties of MgZn2, MgCu2 laves phases: A first-principle study
,”
J. Solid State Chem.
263
,
18
(
2018
).
67.
J. M.
Rosalie
,
H.
Somekawa
,
A.
Singh
, and
T.
Mukai
, “
Structural relationships among MgZn2 and Mg4Zn7 phases and transition structures in Mg-Zn-Y alloys
,”
Philos. Mag.
90
,
3355
(
2010
).
68.
S.
Curtarolo
,
W.
Setyawan
,
G. L. W.
Hart
,
M.
Jahnatek
,
R. V.
Chepulskii
,
R. H.
Taylor
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
O.
Levy
,
M. J.
Mehl
,
H. T.
Stokes
,
D. O.
Demchenko
, and
D.
Morgan
, “
AFLOW: An automatic framework for high-throughput materials discovery
,”
Comput. Mater. Sci.
58
,
218
(
2012
).
69.
Aflowlib.org, see http://www.aflowlib.org for “Automatic-FLOW for materials discovery.”
70.
P. B.
Allen
, “
New method for solving Boltzmann’s equation for electrons in metals
,”
Phys. Rev. B
17
,
3725
(
1978
).
71.
N.
Sergueev
,
D.
Roubtsov
, and
H.
Guo
, “
Ab initio analysis of electron-phonon coupling in molecular devices
,”
Phys. Rev. Lett.
95
,
146803
(
2005
).
72.
S.
Lin
,
W.
Li
,
S.
Li
,
X.
Zhang
,
Z.
Chen
,
Y.
Xu
,
Y.
Chen
, and
Y.
Pei
, “
High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons
,”
Joule
1
,
816
(
2017
).
73.
J.
Yan
,
H.
Wei
,
H.
Xie
,
X.
Gu
, and
H.
Bao
, “
Seeking for Low thermal conductivity atomic configurations in SiGe alloys with Bayesian optimization
,”
ES Energy Environ.
8
,
56
(
2020
).
74.
E.
Dechaumphai
and
R.
Chen
, “
Thermal transport in phononic crystals: The role of zone folding effect
,”
J. Appl. Phys.
111
,
073508
(
2012
).
75.
S.
Banerjee
and
A.
Tyagi
,
Functional Materials: Preparation, Processing and Applications
(Elsevier,
2011
).
76.
J. G.
Eberhart
and
S.
Horner
, “
Bond-energy and surface-energy calculations in metals
,”
J. Chem. Educ.
87
,
608
(
2010
).
77.
J.
Zhou
,
B.
Liao
, and
G.
Chen
, “
First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors
,”
Semicond. Sci. Technol.
31
,
043001
(
2016
).
78.
S.
Zahiri
,
Z.
Xu
,
Y.
Hu
,
H.
Bao
, and
Y.
Shen
, “
A semi-Lagrangian method to solve the nongray phonon Boltzmann transport equation
,”
Int. J. Heat Mass Transf.
138
,
267
(
2019
).
79.
A. F.
Mayadas
and
M.
Shatzkes
, “
Electrical-resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces
,”
Phys. Rev. B
1
,
1382
(
1970
).
80.
K.
Fuchs
, “
The conductivity of thin metallic films according to the electron theory of metals
,”
Math. Proc. Cambridge Philos. Soc.
34
,
100
(
1938
).

Supplementary Material

You do not currently have access to this content.