Gas separation such as CO2 from N2 in flue gas is an important step in reducing greenhouse gas emission. We discuss a separation method that moves mixed gas between two tracks at different pressures with ever-increasing purity at each stage along the tracks. Designs for adsorbents driven by volumetric pumps and membranes driven by a pressure drop are illustrated. For selectivity exceeding 10 in a three-stage system, the purity of the CO2 output is 97.8% with 99.75% recovered. For a six-stage example, the purity of CO2 is 99.996% and 99.9996% is recovered. The cost of compression is estimated from the number of times the two components have to be pressurized as they move between the tracks. For large selectivity, the effective number of times for CO2 is 2 for the adsorbent case and 3 for the membranes in the three-stage design; these numbers are 5 and 6 in the six-stage design. As a result, the compressional energy requirement per input mole is RTln(C)(1+Af) in the isothermal case for compression factor C, effective number of re-compressions A, and input CO2 fraction f. This compressional energy exceeds the minimum energy from entropy by the factor (1+Af)/f if C=1/f for efficient membrane use.

1.
C.
Castel
and
E.
Favre
, “
Membrane separations and energy efficiency
,”
J. Membr. Sci.
548
,
345
357
(
2018
).
2.
L.
Espinal
,
D. L.
Poster
,
W.
Wong-Ng
,
A. J.
Allen
, and
M. L.
Green
, “
Measurement, standards, and data needs for CO2 capture materials: A critical review
,”
Environ. Sci. Technol.
47
,
11960
11975
(
2013
).
3.
H.
Mikulčić
,
I. R.
Skovc
,
D. F.
Dominković
,
S. R.
Wan Alwie
,
Z. A.
Manane
,
R.
Tan
,
N.
Duić
,
S. N. H.
Mohamad
, and
X.
Wanga
, “
Flexible carbon capture and utilization technologies in future energy systems and the utilization pathways of captured CO2
,”
Renewable Sustainable Energy Rev.
114
,
109338
(
2019
).
4.
T.
Wilberforce
,
A.
Baroutaji
,
B.
Soudan
,
A.
Hai Al-Alami
, and
A.
Ghani Olabi
, “
Outlook of carbon capture technology and challenges
,”
Sci. Total Environ.
657
,
56
72
(
2019
).
5.
A.
Farmahini
,
S.
Krishnamurthy
,
D.
Friedrich
,
S.
Brandani
, and
L.
Sarkisov
, “
Performance-based screening of porous materials for carbon capture
,”
Chem. Rev.
121
,
10666
10741
(
2021
).
6.
L. M.
Robeson
, “
The upper bound revisited
,”
J. Membr. Sci.
320
,
390
400
(
2008
).
7.
C.
Castel
,
R.
Bounaceur
, and
E.
Favre
, “
Membrane processes for direct carbon dioxide capture from air: Possibilities and limitations
,”
Front. Chem. Eng.
3
,
668867
(
2021
).
8.
M.
Chowdhury
, “Simulation, design and optimization of membrane gas separation, chemical absorption and hybrid processes for CO2 capture,” Ph.D. dissertation (University of Waterloo, 2012), available at https://uwspace.uwaterloo.ca/handle/10012/6430.
9.
F.
Vega
,
M.
Cano
,
S.
Camino
,
L.
Gallego Fernández
,
E.
Portillo
, and
B.
Navarrete
, “Solvents for carbon dioxide capture,” in Carbon Dioxide Chemistry, Capture and Oil Recovery (Intechopen, 2018), Chap. 8, pp. 141–163, available at https://www.intechopen.com/chapters/57510.
10.
Y.
Wu
,
J.
Xu
,
K.
Mumford
,
G.
Stevens
,
W.
Fei
, and
Y.
Wang
, “
Recent advances in carbon dioxide capture and utilization with amines and ionic liquids
,”
Green Chem. Eng.
1
,
16
32
(
2020
).
11.
R. L.
Siegelman
,
E. J.
Kim
, and
J. R.
Long
, “
Porous materials for carbon dioxide separations
,”
Nat. Mater.
20
,
1060
1072
(
2021
).
12.
L.
Zhao
,
E.
Riensche
,
L.
Blum
, and
D.
Stolten
, “
Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses
,”
J. Membr. Sci.
359
,
160
172
(
2010
).
13.
X.
He
and
M.
Hägg
, “
Hollow fiber carbon membranes: Investigations for CO2 capture
,”
J. Membr. Sci.
378
,
1
9
(
2011
).
14.
A. M.
Arias
,
M. C.
Mussati
,
P. L.
Mores
,
N. J.
Scenna
,
J. A.
Caballero
, and
S. F.
Mussati
, “
Optimization of multi-stage membrane systems for CO2 capture from flue gas
,”
Int. J. Greenhouse Gas Control
53
,
371
390
(
2016
).
15.
R. W.
Baker
and
K.
Lokhandwala
, “Natural gas processing with membranes: An overview,”
Ind. Eng. Chem. Res.
47
, 2109–2121 (
2008
).
16.
A.
Brunetti
,
F.
Scura
,
G.
Barbieri
, and
E.
Drioli
, “
Membrane technologies for CO2 separation
,”
J. Membr. Sci.
359
,
115
125
(
2010
).
17.
T.
Merkel
,
H.
Lin
,
X.
Wei
, and
R.
Baker
, “
Power plant post-combustion carbon dioxide capture: An opportunity for membranes
,”
J. Membr. Sci.
359
,
126
139
(
2010
).
18.
A.
Hussain
,
S.
Farrukh
, and
F.
Minhas
, “
Two-stage membrane system for post-combustion CO2 capture application
,”
Energy Fuels
29
,
6664
6669
(
2015
).
19.
J.
Davison
and
K.
Thambimuthu
, “
Technologies for capture of carbon dioxide
,”
Greenhouse Gas Control Technol.
7
(1),
3
13
(
2005
).
20.
E.
de Visser
,
C.
Hendriks
,
M.
Barrio
,
M.
Mølnvik
,
G.
de Koeijer
,
S.
Liljemark
, and
Y.
Le Galloe
, “
Dynamis CO2 quality recommendations
,”
Int. J. Greenhouse Gas Control
2
,
478
484
(
2008
).
21.
R.
Bounaceur
,
N.
Lape
,
D.
Roizard
,
C.
Vallieres
, and
E.
Favre
, “
Membrane processes for post-combustion carbon dioxide capture: A parametric study
,”
Energy
31
,
2556
(
2006
).
22.
M.
Ho
,
G.
Allinson
, and
D.
Wiley
, “
Reducing the cost of CO2 capture from flue gases using membrane technology
,”
Ind. Eng. Chem. Res.
47
,
1562
1568
(
2008
).
23.
A.
Hussain
and
M.
Hägg
, “
A feasibility study of CO2 capture from flue gas by a facilitated transport membrane
,”
J. Membr. Sci.
359
,
140
148
(
2010
).
24.
B.
Belaissaoui
,
D.
Willson
, and
E.
Favre
, “
Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies
,”
Chem. Eng. J.
211–212
,
122
132
(
2012
).
25.
P.
Shao
,
M.
Dal-Cin
,
M.
Guiver
, and
A.
Kumar
, “
Simulation of membrane-based CO2 capture in a coal-fired powerplant
,”
J. Membr. Sci.
427
,
451
459
(
2013
).
26.
X.
He
,
C.
Fu
, and
M.-B.
Hägg
, “
Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane
,”
Chem. Eng. J.
268
,
1
9
(
2015
).
27.
J.
Franz
,
S.
Schiebahn
,
L.
Zhao
,
E.
Riensche
,
V.
Scherer
, and
D.
Stolten
, “
Investigating the influence of sweep gas on CO2/N2 membranes for post-combustion capture
,”
Int. J. Greenhouse Gas Control
13
,
180
190
(
2013
).
28.
T.
Merkel
,
H.
Lin
,
X.
Wei
, and
R. W.
Baker
, “
Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants
,”
Ind. Eng. Chem. Res.
52
,
1150
1159
(
2013
).
29.
H.
Herzog
,
J.
Meldon
, and
A.
Hatton
, “Advanced post-combustion CO2 capture,” Prepared for the Clean Air Task Force under a grant from the Doris Duke Foundation (2009), available at https://sequestration.mit.edu/pdf/Advanced_Post_Combustion_CO2_Capture.pdf.
30.
K.
Lackner
, “
The thermodynamics of direct air capture of carbon dioxide
,”
Energy
50
,
38
46
(
2013
).
31.
Y.
Lahiouel
and
R.
Lahiouel
, “
Evaluation of energy losses in pipes
,”
Am. J. Mech. Eng.
3
,
32
27
(
2015
).
32.
R.
Bird
,
W.
Stewart
, and
E.
Lightfoot
,
Transport Phenomena
(
John Wiley and Sons, Inc.
,
New York
,
2007
).

Supplementary Material

You do not currently have access to this content.