We present a passive RF to optical data transfer without a local oscillator using an atomic “Rydberg” receiver. We demonstrate the ability to detect a 5G frequency carrier wave (3.5 GHz) and decode digital data from the carrier wave without the use of a local oscillator to detect the modulation of the RF signal. The encoding and decoding of the data are achieved using an intermediate frequency (IF). The rubidium vapor detects the changes in the carrier wave's amplitude, which comes from the mixing of the IF onto the carrier. The rubidium vapor then upconverts the IF into the optical domain for detection. Using this technique for data encoding and extraction, we achieve data rates up to 238 kbps with a variety of encoding schemes.

1.
A.
Artusio-Glimpse
 et al, “
Modern RF measurements with hot atoms: A technology review of Rydberg atom-based radio frequency field sensors
,”
IEEE Microw. Mag.
23
(
5
),
44
56
(
2022
).
2.
N.
Prajapati
 et al, “
TV and video game streaming with a quantum receiver: A study on a Rydberg atom-based receiver’s bandwidth and reception clarity
,”
AVS Quantum Sci.
4
(
3
),
035001
(
2022
).
3.
A. B.
Deb
and
N.
Kjærgaard
, “
Radio-over-fiber using an optical antenna based on Rydberg states of atoms
,”
Appl. Phys. Lett.
112
(
21
),
211106
(
2018
).
4.
M.
Cai
 et al, “
Sensitivity improvement and determination of Rydberg atom-based microwave sensor
,”
Photonics
9
(
4
),
250
(
2022
).
5.
C. L.
Holloway
 et al, “
Rydberg atom-based field sensing enhancement using a split-ring resonator
,”
Appl. Phys. Lett.
120
(
20
),
204001
(
2022
).
6.
G.
Santamaria-Botello
,
S.
Verploegh
,
E.
Bottomley
, and
Z.
Popovic
, “Comparison of noise temperature of Rydberg-atom and electronic microwave receivers,” arXiv:2209.00908 (2022).
7.
H.
Fan
 et al, “
Atom based RF electric field sensing
,”
J. Phys. B
48
(
20
),
202001
(
2015
).
8.
M. T.
Simons
,
J. A.
Gordon
, and
C. L.
Holloway
, “
Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor
,”
Appl. Opt.
57
(
22
),
6456
6460
(
2018
).
9.
B.
Liu
 et al, “
Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor
,”
Phys. Rev. Appl.
18
(
1
),
014045
(
2022
).
10.
D. H.
Meyer
 et al, “
Assessment of Rydberg atoms for wideband electric field sensing
,”
J. Phys. B
53
(
3
),
034001
(
2020
).
11.
M. T.
Simons
 et al, “
Rydberg atom-based sensors for radio-frequency electric field metrology, sensing, and communications
,”
Meas. Sens.
18
,
100273
(
2021
).
12.
S.
Kumar
 et al, “
Atom-based sensing of weak radio frequency electric fields using homodyne readout
,”
Sci. Rep.
7
(
1
),
42981
(
2017
).
13.
D. H.
Meyer
,
P. D.
Kunz
, and
K. C.
Cox
, “
Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz
,”
Phys. Rev. Appl.
15
(
1
),
014053
(
2021
).
14.
L. W.
Bussey
 et al, “
Quantum shot noise limit in a Rydberg RF receiver compared to thermal noise limit in a conventional receiver
,”
IEEE Sens. Lett.
6
,
3502204
(
2022
).
15.
C. L.
Holloway
 et al, “
Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements
,”
IEEE Trans. Antennas Propag.
62
(
12
),
6169
6182
(
2014
).
16.
C. L.
Holloway
 et al, “
Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor
,”
J. Appl. Phys.
121
(
23
),
233106
(
2017
).
17.
M. T.
Simons
,
J. A.
Gordon
, and
C. L.
Holloway
, “
Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency
,”
J. Appl. Phys.
120
(
12
),
123103
(
2016
).
18.
S.
Mauger
,
J.
Millen
, and
M. P. A.
Jones
, “
Spectroscopy of strontium Rydberg states using electromagnetically induced transparency
,”
J. Phys. B
40
(
22
),
F319
F325
(
2007
).
19.
S. E.
Harris
, “
Lasers without inversion: Interference of lifetime-broadened resonances
,”
Phys. Rev. Lett.
62
(
9
),
1033
1036
(
1989
).
20.
S. E.
Harris
,
J. E.
Field
, and
A.
Imamoglu
, “
Nonlinear optical processes using electromagnetically induced transparency
,”
Phys. Rev. Lett.
64
(
10
),
1107
1110
(
1990
).
21.
K. J.
Boller
,
A.
Imamoğlu
, and
S. E.
Harris
, “
Observation of electromagnetically induced transparency
,”
Phys. Rev. Lett.
66
(
20
),
2593
2596
(
1991
).
22.
S. H.
Autler
and
C. H.
Townes
, “
Stark effect in rapidly varying fields
,”
Phys. Rev.
100
(
2
),
703
722
(
1955
).
23.
J. A.
Gordon
 et al, “
Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms
,”
Appl. Phys. Lett.
105
(
2
),
024104
(
2014
).
24.
S.
Kumar
 et al, “
Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells
,”
Opt. Express
25
(
8
),
8625
8637
(
2017
).
25.
C.
Holloway
 et al, “
A multiple-band Rydberg atom-based receiver: AM/FM stereo reception
,”
IEEE Trans. Antennas Propag.
63
(
3
),
63
76
(
2021
).
26.
C. L.
Holloway
 et al, “
Atom-based RF electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging
,”
IEEE Trans. Electromagn. Compat.
59
(
2
),
717
728
(
2017
).
27.
M. T.
Simons
 et al,
Applications with a Rydberg Atom-Based Radio Frequency Antenna/Receiver
(
IEEE
, 2019).
28.
D. H.
Meyer
 et al, “
Digital communication with Rydberg atoms and amplitude-modulated microwave fields
,”
Appl. Phys. Lett.
112
(
21
),
211108
(
2018
).
29.
C. L.
Holloway
 et al, “
Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver
,”
IEEE Antennas Wirel. Propag. Lett.
18
(
9
),
1853
1857
(
2019
).
30.
M. T.
Simons
 et al, “
A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave
,”
Appl. Phys. Lett.
114
(
11
),
114101
(
2019
).
31.
Z.
Song
 et al, “
Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier
,”
Opt. Express
27
(
6
),
8848
8857
(
2019
).
32.
Y.
Jiao
 et al, “
Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication
,”
Appl. Phys. Express
12
(
12
),
126002
(
2019
).
33.
H.
Taub
and
D. L.
Schilling
,
Principles of Communication Systems
(
McGraw-Hill
,
1986
).
34.
C. E.
Shannon
, “
Communication in the presence of noise
,”
Proc. IRE
37
(
1
),
10
21
(
1949
).
35.
L. W.
Bussey
 et al, “
Rydberg RF receiver operation to track RF signal fading and frequency drift
,”
J. Lightwave Technol.
39
,
7813
7820
(
2021
).
36.
N.
Šibalić
 et al, “
ARC: An open-source library for calculating properties of alkali Rydberg atoms
,”
Comput. Phys. Commun.
220
,
319
331
(
2017
).
37.
E. J.
Robertson
 et al, “
ARC 3.0: An expanded python toolbox for atomic physics calculations
,”
Comput. Phys. Commun.
261
,
107814
(
2021
).
38.
A. K.
Mohapatra
,
T. R.
Jackson
, and
C. S.
Adams
, “
Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency
,”
Phys. Rev. Lett.
98
(
11
),
113003
(
2007
).
39.
F.
Jia
 et al, “
Frequency stabilization method for transition to a Rydberg state using Zeeman modulation
,”
Appl. Opt.
59
(
7
),
2108
2113
(
2020
).
40.
J. A.
Sedlacek
 et al, “
Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
,”
Nat. Phys.
8
(
11
),
819
824
(
2012
).
41.
J. S.
Otto
 et al, “
Data capacity scaling of a distributed Rydberg atomic receiver array
,”
J. Appl. Phys.
129
(
15
),
154503
(
2021
).
42.
S.
Huang
and
Z.
Zhang
,
Principles of FECs with Evaluating Different Types of FEC Used in the Internet and Wireless Networks
(
IEEE
, 2011).
You do not currently have access to this content.