In this work, thin films of ruthenium-doped and cerium-doped yttrium iron garnet were deposited on silicon using solgel chemistry. Doped YIG could be produced in phase pure form up to a precursor stoichiometry of Y3Ru0.1Fe4.9O12 and Ce0.7Y2.3Fe5O12. Both dopants significantly increase the coercivity and anisotropy field of the materials either due to domain wall pinning or increased spin–orbit coupling from the dopant. To delineate these two effects, the dynamic magnetic properties were studied using strip line ferromagnetic resonance (FMR). The FMR linewidth was separated into intrinsic loss and inhomogeneous line broadening. Inhomogeneous line broadening was found to dominate the magnetic losses in all the films likely due to magnon scattering off grain boundaries, but the Gilbert damping remained fairly low. By comparing the two dopants, it was found that Gilbert damping increased more in Ce:YIG films than in Ru:YIG films. This finding was corroborated by changes in the anisotropy field of the films, indicating a larger contribution from spin–orbit coupling from cerium than from ruthenium. Surprisingly, while magnetic loss globally increased with higher substitution, adding a small amount of dopant actually reduced the inhomogeneous line broadening in both sets of films. This was corroborated by crystallite size. The damping in Ru:YIG also decreased with a small amount of the dopant, which has been predicted by Kittel for doped garnets. Thus, it follows that there is an ideal doping regime where solgel YIG can be doped at low levels without increasing magnetic loss.

1.
A. S.
Tatarenko
,
V.
Gheevarughese
, and
G.
Srinivasan
,
Electron. Lett.
42
,
540
(
2006
).
2.
H. M.
Zhou
,
F. J.
Zhu
,
C.
Li
, and
Y.
Xiao
,
Appl. Mech. Mater.
303-306
,
1793
(
2013
).
3.
R. V.
Petrov
,
A. S.
Tatarenko
,
S.
Pandey
,
G.
Srinivasan
,
J. V.
Mantese
, and
R.
Azadegan
,
Electron. Lett.
44
,
506
(
2008
).
4.
X. G.
Wang
,
A.
Sukhov
,
L.
Chotorlishvili
,
C. L.
Jia
,
G. H.
Guo
, and
J.
Berakdar
,
J. Phys.: Condens. Matter
29
,
095804
(
2017
).
5.
Z.
Yao
,
Y. E.
Wang
,
S.
Keller
, and
G. P.
Carman
,
IEEE Trans. Antenn. Propag.
63
,
3335
(
2015
).
6.
C.
Hauser
,
T.
Richter
,
N.
Homonnay
,
C.
Eisenschmidt
,
M.
Qaid
,
H.
Deniz
,
D.
Hesse
,
M.
Sawicki
,
S. G.
Ebbinghaus
, and
G.
Schmidt
,
Sci. Rep.
6
,
20827
(
2016
).
7.
N.
Yahya
,
K.
Koziol
, and
M. K.
Bin Mansor
,
Defect Diffus. Forum
283-286
,
406
(
2009
).
8.
B. J. H.
Stadler
and
T.
Mizumoto
,
IEEE Photonics J.
6
,
20827
(
2014
).
9.
S.
Ghosh
,
S.
Keyvaninia
,
Y.
Shoji
,
W.
Van Roy
,
T.
Mizumoto
,
G.
Roelkens
, and
R. G.
Baets
,
IEEE Photonics Technol. Lett.
24
,
1653
(
2012
).
10.
C. J.
Firby
and
A. Y.
Elezzabi
,
Ultrafast Phenom. Nanophotonics
9746
,
108
(
2016
).
11.
H.
How
,
P.
Shi
,
C.
Vittoria
,
L. C.
Kempel
, and
K. D.
Trott
,
J. Appl. Phys.
87
,
4966
(
2000
).
12.
X.
Guang Wang
,
L.
Chotorlishvili
,
G.
Hua Guo
, and
J.
Berakdar
,
J. Appl. Phys.
124
,
073903
(
2018
).
13.
X.
Yang
,
Y.
Gao
,
J.
Wu
,
Z.
Zhou
,
S.
Beguhn
,
T.
Nan
, and
N. X.
Sun
,
IEEE Microw. Wirel. Compon. Lett.
24
,
191
(
2014
).
14.
E.
Baños-López
,
C. A.
Cortés-Escobedo
,
F.
Sánchez-De Jesús
,
A.
Barba-Pingarrón
, and
A. M.
Bolarín-Miró
,
J. Alloys Compd.
730
,
127
(
2018
).
15.
P.
Hansen
,
K.
Witter
, and
W.
Tolksdorf
,
Phys. Rev. B
27
,
6608
(
1983
).
16.
R.
Krishnan
,
V.
Cagan
,
M.
Rivoire
,
C. D.
Graham
, and
J. J.
Rhyne
,
AIP Conf. Proc.
5,
704
706
(
1972
).
17.
R. L.
Comstock
and
J. J.
Raymond
,
J. Appl. Phys.
38
,
3737
(
1967
).
18.
A.
Kehlberger
,
K.
Richter
,
M. C.
Onbasli
,
G.
Jakob
,
D. H.
Kim
,
T.
Goto
,
C. A.
Ross
,
G.
Götz
,
G.
Reiss
,
T.
Kuschel
, and
M.
Kläui
,
Phys. Rev. Appl.
4
,
014008
(
2015
).
19.
A. M.
Enke
,
K.
Fleishhauer
,
J.
Gunsser
,
W.
Hanser
,
P.
Nomura
,
S.
Tolksdorf
,
W.
Winkler
,
G.
Wolfmeier
,
U.
Hellwege
, and
K.-H.
Hellwege
,
Magnetic and Other Properties of Oxides and Related Compounds: Part A: Garnets and Perovskites
(
Springer-Verlag
,
New York
,
1978
).
20.
A. B.
Smith
and
R. V.
Jones
,
J. Appl. Phys.
34
,
1283
(
1963
).
21.
E.
Lage
,
L.
Beran
,
A. U.
Quindeau
,
L.
Ohnoutek
,
M.
Kucera
,
R.
Antos
,
S. R.
Sani
,
G. F.
Dionne
,
M.
Veis
, and
C. A.
Ross
,
APL Mater.
5
,
036104
(
2017
).
22.
M.
Kuila
,
U.
Deshpande
,
R. J.
Choudhary
,
P.
Rajput
,
D. M.
Phase
, and
V.
Raghavendra Reddy
,
J. Appl. Phys.
129
,
093903
(
2021
).
23.
M. C.
Onbasli
,
L.
Beran
,
M.
Zahradník
,
M.
Kucera
,
R.
Antoš
,
J.
Mistrík
,
G. F.
Dionne
,
M.
Veis
, and
C. A.
Ross
,
Sci. Rep.
6
,
23640
(
2016
).
24.
G. F.
Dionne
,
IEEE Trans. Magn.
47
,
272
(
2011
).
25.
A.
Acosta
,
K.
Fitzell
,
J. D.
Schneider
,
C.
Dong
,
Z.
Yao
,
R.
Sheil
,
Y. E.
Wang
,
G. P.
Carman
,
N. X.
Sun
, and
J. P.
Chang
,
J. Appl. Phys.
128
,
013903
(
2020
).
26.
W.
Gu
,
Q.
Xu
, and
Y. E.
Wang
, in
2016 IEEE Conference on Antenna Measurements and Applications (CAMA 2016)
(
Syracuse
,
2016
), pp.
224
228
.
27.
M.
Bonnet
,
A.
Delapalme
,
H.
Fuess
, and
M.
Thomas
,
Acta Crystallogr. Sect. B: Struct. Sci. Crystallogr. Cryst. Chem.
31
,
2233
(
1975
).
28.
S.
Geller
,
J. Appl. Phys.
37
,
1408
(
1966
).
29.
K. H.
Hellwege
and
A. M.
Hellwege
,
Landolt-Börnstein—Group III Crystal and Solid State Physics
(
Springer-verlag
,
Berlin
,
1978
).
30.
P.
Hansen
,
Phys. Status Solidi B
47
,
565
(
1971
).
31.
Y.
Öztürk
,
I.
Avgin
,
M.
Erol
, and
E.
Çelik
,
Adv. Nanoscale Magn.
122
,
113
129
(
2009
).
32.
R. B.
Borade
,
S. E.
Shirsath
,
G.
Vats
,
A. S.
Gaikwad
,
S. M.
Patange
,
S. B.
Kadam
,
R. H.
Kadam
, and
A. B.
Kadam
,
Nanoscale Adv.
1
,
403
(
2018
).
33.
B.
Casals
,
M.
Espínola
,
R.
Cichelero
,
S.
Geprägs
,
M.
Opel
,
R.
Gross
,
G.
Herranz
, and
J.
Fontcuberta
,
Appl. Phys. Lett.
108
,
102407
(
2016
).
34.
M.
Niyaifar
,
H.
Mohammadpour
, and
N.
Khalafi
,
J. Alloys Compd.
688
,
357
(
2016
).
35.
M.
Gharibshahi
,
Ceram. Int.
45
,
24437
(
2019
).
36.
V.
Sharma
,
J.
Saha
,
S.
Patnaik
, and
B. K.
Kuanr
,
AIP Adv.
7
,
056405
(
2017
).
37.
R.
Peña-Garcia
,
A.
Delgado
,
Y.
Guerra
,
B. V. M.
Farias
,
D.
Martinez
,
E.
Skovroinski
,
A.
Galembeck
, and
E.
Padrón-Hernández
,
Phys. Status Solidi A
213
,
2485
(
2016
).
38.
R.
Kuchi
,
S.
Il Kim
,
K. M.
Lee
,
Y.
Lee
,
S. Y.
Park
, and
J. R.
Jeong
,
Nanosci. Nanotechnol. Lett.
7
,
738
(
2015
).
39.
D. T. T.
Nguyet
,
N. P.
Duong
,
T.
Satoh
,
L. N.
Anh
, and
T. D.
Hien
,
J. Alloys Compd.
541
,
18
(
2012
).
40.
M. A.
Musa
,
R. S.
Azis
,
N. H.
Osman
,
J.
Hassan
, and
T.
Zangina
,
Results Phys.
7
,
1135
(
2017
).
41.
L. R. F.
Leal
,
Y.
Guerra
,
E.
Padrón-Hernández
,
A. R.
Rodrigues
,
F. E. P.
Santos
, and
R.
Peña-Garcia
,
Mater. Lett.
236
,
547
(
2019
).
42.
R. B.
Borade
,
S. E.
Shirsath
,
G.
Vats
,
A. S.
Gaikwad
,
S. M.
Patange
,
S. B.
Kadam
,
R. H.
Kadam
, and
A. B.
Kadam
,
Nanoscale Adv.
1
,
403
(
2019
).
43.
R.
Peña-Garcia
,
A.
Delgado
,
Y.
Guerra
, and
E.
Padrón- Hernández
,
Mater. Lett.
161
,
384
(
2015
).
44.
F.
Liu
and
S.
Ye
,
J. Wuhan Univ. Technol. Mater. Sci. Ed.
32
,
557
(
2017
).
45.
T.
Tsuchiya
,
T.
Sei
, and
H.
Kanda
,
J. Non-Cryst. Solids
147-148
,
463
(
1992
).
46.
R. E.
Shaiboub
and
N. B.
Ibrahim
,
J. Nanosci.
2014
,
1
.
47.
A.
Delgado
,
Y.
Guerra
,
E.
Padrón-Hernández
, and
R.
Peña-Garcia
,
Mater. Res. Express
5
,
026419
(
2018
).
48.
I.
Lucas
,
P.
Jiménez-Cavero
,
J. M.
Vila-Fungueiriño
,
C.
Magén
,
S.
Sangiao
,
J. M.
De Teresa
,
L.
Morellón
, and
F.
Rivadulla
,
Phys. Rev. Mater.
1
,
074407
(
2017
).
49.
X.
Guo
,
Y.
Chen
,
G.
Wang
,
Y.
Zhang
,
J.
Ge
,
X.
Tang
,
F.
Ponchel
,
D.
Rémiens
, and
X.
Dong
,
J. Alloys Compd.
671
,
234
(
2016
).
50.
B. K.
Singh
and
S. K.
Mishra
,
Mater. Today: Proc.
29
,
638
(
2020
).
51.
F.
Chen
,
X.
Wang
,
Y.
Nie
,
Q.
Li
,
J.
Ouyang
,
Z.
Feng
,
Y.
Chen
, and
V. G.
Harris
,
Sci. Rep.
6
,
28206
(
2016
).
52.
S. D.
Oosterhout
,
V.
Savikhin
,
J.
Zhang
,
Y.
Zhang
,
M. A.
Burgers
,
S. R.
Marder
,
G. C.
Bazan
, and
M. F.
Toney
,
Chem. Mater.
29
,
3062
(
2017
).
53.
J.
Ilavsky
,
J. Appl. Crystallogr.
45
,
324
(
2012
).
54.
Q.
Xu
,
W.
Gu
, and
Y. E.
Wang
, in
2016 IEEE Conference on Antenna Measurements and Applications CAMA 2016
(
Institute of Electrical and Electronics Engineers Inc
.,
2017
).
55.
M. C.
Onbasli
,
A.
Kehlberger
,
D. H.
Kim
,
G.
Jakob
,
M.
Kläui
,
A. V.
Chumak
,
B.
Hillebrands
, and
C. A.
Ross
,
APL Mater.
2
,
106102
(
2014
).
56.
H.
Hauser
,
D. C.
Jiles
,
Y.
Melikhov
,
L.
Li
, and
R.
Grössinger
,
J. Magn. Magn. Mater.
300
,
273
(
2006
).
57.
O.
Yaln
,
C.-K.
Lo
,
H.
Montiel
,
G.
Alvarez
,
M.
Sharma
,
S.
Pathak
,
M.
Sharma
,
S.
Widuch
,
R. L.
Stamps
,
D.
Skrzypek
,
Z.
Celinski
,
G.
Vázquez-Victorio
,
U.
Acevedo-Salas
,
R.
Valenzuela
,
M.
Yoshikiyo
,
A.
Namai
,
S.
Ohkoshi
,
S.-F.
Fu
, and
X.-Z.
Wang
,
Ferromagnetic Resonance
(
InTech
,
2013
).
58.
C.
Dubs
,
O.
Surzhenko
,
R.
Linke
,
A.
Danilewsky
,
U.
Brückner
, and
J.
Dellith
,
J. Phys. D: Appl. Phys.
50
,
204005
(
2017
).
59.
J. M.
Beaujour
,
D.
Ravelosona
,
I.
Tudosa
,
E. E.
Fullerton
, and
A. D.
Kent
,
Phys. Rev. B
80
,
180415
(
2009
).
60.
M. J.
Hurben
and
C. E.
Patton
,
J. Appl. Phys.
83
,
4344
(
1998
).
61.
S. S.
Kalarickal
,
N.
Mo
,
P.
Krivosik
, and
C. E.
Patton
,
Phys. Rev. B
79
,
094427
(
2009
).
62.
H.
Man
,
Z.
Shi
,
G.
Xu
,
Y.
Xu
,
X.
Chen
,
S.
Sullivan
,
J.
Zhou
,
K.
Xia
,
J.
Shi
, and
P.
Dai
,
Phys. Rev. B
96, 100406 (
2017
).
63.
Y. K.
Fetisov
and
G.
Srinivasan
,
Electron. Lett.
41
,
1066
(
2005
).
64.
C.
Kittel
,
Phys. Rev.
73
,
155
(
1948
).
65.
H.
Man
,
Z.
Shi
,
G.
Xu
,
Y.
Xu
,
X.
Chen
,
S.
Sullivan
,
J.
Zhou
,
K.
Xia
,
J.
Shi
, and
P.
Dai
,
Phys. Rev. B
96
,
100406
(
2017
).
66.
C.
Kittel
,
Phys. Rev.
115
,
1587
(
1959
).
67.
E. R.
Rosenberg
,
K.
Litzius
,
J. M.
Shaw
,
G. A.
Riley
,
G. S. D.
Beach
,
H. T.
Nembach
, and
C. A.
Ross
,
Adv. Electron. Mater.
7
,
2100452
(
2021
).

Supplementary Material

You do not currently have access to this content.