Molecular combing facilitates the investigation of single DNA molecules with a moving water–air interface to immobilize DNA molecules on a solid surface. In this study, we use dissipative particle dynamics to model the three-phase system with complex fluids. We visually demonstrated the DNA deposition process and quantitatively described the degree of DNA linearization. Then, we study the effect of the substrate property on the combing results. Finally, we propose a chemical heterogeneous stripe-patterned substrate that can improve the linearization of deposited DNA chains.

1.
T.
Kelly
and
A. J.
Callegari
, “
Dynamics of DNA replication in a eukaryotic cell
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
4973
4982
(
2019
).
2.
S.-I.
Hiraga
,
C.
Monerawela
,
Y.
Katou
,
S.
Shaw
,
K. R.
Clark
,
K.
Shirahige
, and
A. D.
Donaldson
, “
Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks
,”
EMBO Rep.
19
,
e46222
(
2018
).
3.
G.
Kaur
,
J. S.
Lewis
, and
A. M.
van Oijen
, “
Shining a spotlight on DNA: Single-molecule methods to visualise DNA
,”
Molecules
24
,
491
(
2019
).
4.
M. S.
da Silva
,
G. R.
Cayres-Silva
,
M. O.
Vitarelli
,
P. A.
Marin
,
P. M.
Hiraiwa
,
C. B.
Araújo
,
B. B.
Scholl
,
A. R.
Ávila
,
R.
McCulloch
,
M. S.
Reis
, and
M. C.
Elias
, “
Transcription activity contributes to the firing of non-constitutive origins in African trypanosomes helping to maintain robustness in S-phase duration
,”
Sci. Rep.
9
,
18512
(
2019
).
5.
V. F.
Kahl
,
J. A.
Allen
,
C. B.
Nelson
,
A. P.
Sobinoff
,
M.
Lee
,
T.
Kilo
,
R. S.
Vasireddy
, and
H. A.
Pickett
, “
Telomere length measurement by molecular combing
,”
Front. Cell Dev. Biol.
8
,
493
(
2020
).
6.
M.
Bialic
,
V.
Coulon
,
M.
Drac
,
T.
Gostan
, and
E.
Schwob
, “Analyzing the dynamics of DNA replication in mammalian cells using DNA combing,” in DNA Replication (Springer, 2015), pp. 67–78.
7.
Y.-Y.
Liu
,
P.-Y.
Wang
,
S.-X.
Dou
,
W.-C.
Wang
,
P.
Xie
,
H.-W.
Yin
,
X.-D.
Zhang
, and
X. G.
Xi
, “
Ionic effect on combing of single DNA molecules and observation of their force-induced melting by fluorescence microscopy
,”
J. Chem. Phys.
121
,
4302
4309
(
2004
).
8.
A.
Benke
,
M.
Mertig
, and
W.
Pompe
, “
PH- and salt-dependent molecular combing of DNA: Experiments and phenomenological model
,”
Nanotechnology
22
,
035304
(
2010
).
9.
J.
Allemand
,
D.
Bensimon
,
L.
Jullien
,
A.
Bensimon
, and
V.
Croquette
, “
pH-dependent specific binding and combing of DNA
,”
Biophys. J.
73
,
2064
2070
(
1997
).
10.
J.
Deen
,
W.
Sempels
,
R.
De Dier
,
J.
Vermant
,
P.
Dedecker
,
J.
Hofkens
, and
R. K.
Neely
, “
Combing of genomic DNA from droplets containing picograms of material
,”
ACS Nano
9
,
809
816
(
2015
).
11.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
4435
(
1997
).
12.
L.
Xiao
,
C.
Lin
,
S.
Chen
,
Y.
Liu
,
B.
Fu
, and
W.
Yan
, “
Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel
,”
Biomech. Model. Mechanobiol.
19
,
159
171
(
2020
).
13.
Y.
Deng
,
H.-Y.
Chang
, and
H.
Li
, “
Recent advances in computational modeling of biomechanics and biorheology of red blood cells in diabetes
,”
Biomimetics
7
,
15
(
2022
).
14.
C.
Lin
,
L.
Yang
,
F.
Chen
,
S.
Chen
, and
H.
Yin
, “
A dissipative particle dynamics and discrete element method coupled model for particle interactions in sedimentation toward the fabrication of a functionally graded material
,”
Colloids Surf. A: Physicochem. Eng. Asp.
604
,
125326
(
2020
).
15.
S.
Chen
,
N.
Phan-Thien
,
X.
Fan
, and
B. C.
Khoo
, “
Dissipative particle dynamics simulation of polymer drops in a periodic shear flow
,”
J. Non-Newton. Fluid Mech.
118
,
65
81
(
2004
).
16.
X.
Li
,
Y.
Tang
,
H.
Liang
, and
G. E.
Karniadakis
, “
Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems
,”
Chem. Commun.
50
,
8306
8308
(
2014
).
17.
C.
Lin
,
S.
Chen
,
L.
Xiao
, and
Y.
Liu
, “
Tuning drop motion by chemical chessboard-patterned surfaces: A many-body dissipative particle dynamics study
,”
Langmuir
34
,
2708
2715
(
2018
).
18.
C.
Lin
,
K.
Zhang
,
X.
Chen
,
L.
Xiao
,
S.
Chen
,
J.
Zhu
, and
T.
Zou
, “
Reducing droplet contact time and area by craterlike surface structure
,”
Phys. Rev. Fluids
6
,
083602
(
2021
).
19.
D.
Pan
,
G.
Zhao
,
Y.
Lin
, and
X.
Shao
, “
Mesoscopic modelling of microbubble in liquid with finite density ratio of gas to liquid
,”
Europhys. Lett.
122
,
20003
(
2018
).
20.
C.
Lin
,
D.
Cao
,
D.
Zhao
,
P.
Wei
,
S.
Chen
, and
Y.
Liu
, “
Dynamics of droplet impact on a ring surface
,”
Phys. Fluids
34
,
012004
(
2022
).
21.
C.
Lin
,
Z.
Li
,
L.
Lu
,
S.
Cai
,
M.
Maxey
, and
G. E.
Karniadakis
, “
Operator learning for predicting multiscale bubble growth dynamics
,”
J. Chem. Phys.
154
,
104118
(
2021
).
22.
C.
Lin
,
M.
Maxey
,
Z.
Li
, and
G. E.
Karniadakis
, “
A seamless multiscale operator neural network for inferring bubble dynamics
,”
J. Fluid Mech.
929
,
A18
(
2021
).
23.
X.
Fan
,
N.
Phan-Thien
,
N. T.
Yong
,
X.
Wu
, and
D.
Xu
, “
Microchannel flow of a macromolecular suspension
,”
Phys. Fluids
15
,
11
21
(
2003
).
24.
X.
Fan
,
N.
Phan-Thien
,
S.
Chen
,
X.
Wu
, and
T.
Yong Ng
, “
Simulating flow of DNA suspension using dissipative particle dynamics
,”
Phys. Fluids
18
,
063102
(
2006
).
25.
V.
Symeonidis
,
G. E.
Karniadakis
, and
B.
Caswell
, “
Dissipative particle dynamics simulations of polymer chains: Scaling laws and shearing response compared to DNA experiments
,”
Phys. Rev. Lett.
95
,
076001
(
2005
).
26.
J. A.
Millan
,
W.
Jiang
,
M.
Laradji
, and
Y.
Wang
, “
Pressure driven flow of polymer solutions in nanoscale slit pores
,”
J. Chem. Phys.
126
,
03B617
(
2007
).
27.
Y.-D.
He
,
H.-J.
Qian
,
Z.-Y.
Lu
, and
Z.-S.
Li
, “
Polymer translocation through a nanopore in mesoscopic simulations
,”
Polymer
48
,
3601
3606
(
2007
).
28.
E.
Moeendarbary
,
T.
Ng
,
H.
Pan
, and
K.
Lam
, “
Migration of DNA molecules through entropic trap arrays: A dissipative particle dynamics study
,”
Microfluid. Nanofluid.
8
,
243
254
(
2010
).
29.
P.
Español
and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
,
191
(
1995
).
30.
P. B.
Warren
, “
Vapor-liquid coexistence in many-body dissipative particle dynamics
,”
Phys. Rev. E
68
,
066702
(
2003
).
31.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
, “
Entropic elasticity of λ-phage DNA
,”
Science
265
,
1599
1600
(
1994
).
32.
R.
Larson
,
H.
Hu
,
D.
Smith
, and
S.
Chu
, “
Brownian dynamics simulations of a DNA molecule in an extensional flow field
,”
J. Rheol.
43
,
267
304
(
1999
).
33.
P. T.
Underhill
and
P. S.
Doyle
, “
On the coarse-graining of polymers into chains
,”
J. Non-Newtonian Fluid Mech.
122
,
3
31
(
2004
).
34.
N.
Spenley
, “
Scaling laws for polymers in dissipative particle dynamics
,”
Europhys. Lett.
49
,
534
(
2000
).
35.
M.
Langeloth
,
Y.
Masubuchi
,
M. C.
Böhm
, and
F.
Müller-Plathe
, “
Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs
,”
J. Chem. Phys.
138
,
104907
(
2013
).
36.
S.
Kumar
and
R. G.
Larson
, “
Brownian dynamics simulations of flexible polymers with spring–spring repulsions
,”
J. Chem. Phys.
114
,
6937
6941
(
2001
).
37.
F.
Goujon
,
P.
Malfreyt
, and
D. J.
Tildesley
, “
Mesoscopic simulation of entanglements using dissipative particle dynamics: Application to polymer brushes
,”
J. Chem. Phys.
129
,
034902
(
2008
).
38.
P.
Nikunen
,
I.
Vattulainen
, and
M.
Karttunen
, “
Reptational dynamics in dissipative particle dynamics simulations of polymer melts
,”
Phys. Rev. E
75
,
036713
(
2007
).
39.
N.
Hoda
and
R. G.
Larson
, “
Brownian dynamics simulations of single polymer chains with and without self-entanglements in theta and good solvents under imposed flow fields
,”
J. Rheol.
54
,
1061
1081
(
2010
).
40.
T. W.
Sirk
,
Y. R.
Slizoberg
,
J. K.
Brennan
,
M.
Lisal
, and
J. W.
Andzelm
, “
An enhanced entangled polymer model for dissipative particle dynamics
,”
J. Chem. Phys.
136
,
134903
(
2012
).
41.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
42.
F.
Valle
,
M.
Favre
,
P.
De Los Rios
,
A.
Rosa
, and
G.
Dietler
, “
Scaling exponents and probability distributions of DNA end-to-end distance
,”
Phys. Rev. Lett.
95
,
158105
(
2005
).
43.
C.
Lin
,
S.
Chen
, and
L.
Xiao
, “
New dissipative particle dynamics boundary condition for complex geometry
,”
Acta Phys. Sin.
68
,
140204
(
2019
).
44.
B.
Charlot
,
R.
Teissier
,
M.
Drac
, and
E.
Schwob
, “
DNA on rails: Combing DNA fibers on nanogratings
,”
Appl. Phys. Lett.
105
,
243701
(
2014
).
You do not currently have access to this content.