Fundamental aspects of ferroelectric HfO2, a fluorite-type oxide, are not understood yet. This is evident by different theories regarding, e.g., the wake-up effect or the antiferroelectric-like behavior of HfO2 manufactured with different doping or deposition techniques. Therefore, we focus on sputtered and undoped HfO2 to gain deeper understanding of the ferroelectric properties of pure HfO2. A temperature gradient on a 10×10mm2 substrate during rapid thermal annealing led to different ferroelectric device performances in terms of remnant polarization and the wake-up effect. The results from the electrical characterization are compared to observations by transmission electron microscopy, performed on pristine and trained samples in plan-view as well as in cross section. We observed that different temperature treatments caused effects at the interfaces of the TiN electrodes and also affected the microstructure and defect concentration of the HfO2 itself. Devices from the hot corner showed wake-up free ferroelectricity with a remnant polarization below 10 μC/cm2, whereas devices from the cold corner showed a strong wake-up effect with remnant polarization starting from 0 to above 20 μC/cm2 after 106 cycles. After observing a small structural transformation in trained devices, we attributed this strong wake-up effect to gradual ferroelastic switching of pristine [110] oriented grains with in-plane polarization to partially out-of-plane polarization, while the predominantly 111 oriented grains in the hot corner can suppress the wake-up effect.

1.
H. H.
Radamson
,
H.
Zhu
,
Z.
Wu
,
X.
He
,
H.
Lin
,
J.
Liu
,
J.
Xiang
,
Z.
Kong
,
W.
Xiong
,
J.
Li
,
H.
Cui
,
J.
Gao
,
H.
Yang
,
Y.
Du
,
B.
Xu
,
B.
Li
,
X.
Zhao
,
J.
Yu
,
Y.
Dong
, and
G.
Wang
, “
State of the art and future perspectives in advanced CMOS technology
,”
Nanomaterials
10
,
1555
(
2020
).
2.
M. S.
Narula
and
A.
Pandey
, “
Performance evaluation of stacked gate oxide/high K spacers based gate all around device architectures at 10 nm technology node
,”
Silicon
14
,
2397
2407
(
2022
).
3.
I.-S.
Park
,
K.-R.
Kim
,
S.
Lee
, and
J.
Ahn
, “
Resistance switching characteristics for nonvolatile memory operation of binary metal oxides
,”
Jpn. J. Appl. Phys.
46
,
2172
2174
(
2007
).
4.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Mueller
,
D.
Bräuhaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
, “
Ferroelectricity in simple binary ZrO2 and HfO2
,”
Nano Lett.
12
,
4318
4323
(
2012
).
5.
T. S.
Boscke
,
J.
Muller
,
D.
Brauhaus
,
U.
Schroder
, and
U.
Bottger
, “Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors,” in 2011 International Electron Devices Meeting (IEEE, Washington, DC, 2011), pp. 24.5.1–24.5.4.
6.
N.
Du
,
N.
Manjunath
,
Y.
Li
,
S.
Menzel
,
E.
Linn
,
R.
Waser
,
T.
You
,
D.
Bürger
,
I.
Skorupa
,
D.
Walczyk
,
C.
Walczyk
,
O. G.
Schmidt
, and
H.
Schmidt
, “
Field-driven hopping transport of oxygen vacancies in memristive oxide switches with interface-mediated resistive switching
,”
Phys. Rev. Appl.
10
,
054025
(
2018
).
7.
B.
Max
,
M.
Pešić
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Interplay between ferroelectric and resistive switching in doped crystalline HfO2
,”
J. Appl. Phys.
123
,
134102
(
2018
).
8.
G.
Niu
,
P.
Calka
,
P.
Huang
,
S. U.
Sharath
,
S.
Petzold
,
A.
Gloskovskii
,
K.
Fröhlich
,
Y.
Zhao
,
J.
Kang
,
M. A.
Schubert
,
F.
Bärwolf
,
W.
Ren
,
Z.-G.
Ye
,
E.
Perez
,
C.
Wenger
,
L.
Alff
, and
T.
Schroeder
, “
Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy
,”
Mater. Res. Lett.
7
,
117
123
(
2019
).
9.
M.
Qi
,
Y.
Tao
,
Z.
Wang
,
H.
Xu
,
X.
Zhao
,
W.
Liu
,
J.
Ma
, and
Y.
Liu
, “
Highly uniform switching of HfO2x based RRAM achieved through Ar plasma treatment for low power and multilevel storage
,”
Appl. Surf. Sci.
458
,
216
221
(
2018
).
10.
T.
Mittmann
,
M.
Materano
,
P. D.
Lomenzo
,
M. H.
Park
,
I.
Stolichnov
,
M.
Cavalieri
,
C.
Zhou
,
C.
Chung
,
J. L.
Jones
,
T.
Szyjka
,
M.
Müller
,
A.
Kersch
,
T.
Mikolajick
, and
U.
Schroeder
, “
Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering
,”
Adv. Mater. Interfaces
6
,
1900042
(
2019
).
11.
R.
He
,
H.
Wu
,
S.
Liu
,
H.
Liu
,
X. R.
Wang
, and
Z.
Zhong
, “
Charged oxygen vacancy induced ferroelectric structure transition in hafnium oxide
,” arXiv:2106.12159 (
2021
).
12.
S.
Starschich
,
S.
Menzel
, and
U.
Böttger
, “
Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide
,”
Appl. Phys. Lett.
108
,
032903
(
2016
).
13.
P.
Nukala
,
M.
Ahmadi
,
Y.
Wei
,
S.
de Graaf
,
E.
Stylianidis
,
T.
Chakrabortty
,
S.
Matzen
,
H. W.
Zandbergen
,
A.
Björling
,
D.
Mannix
,
D.
Carbone
,
B.
Kooi
, and
B.
Noheda
, “
Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices
,”
Science
372
,
630
635
(
2021
).
14.
M. H.
Shao
,
H. F.
Liu
,
R.
He
,
X. M.
Li
,
L.
Wu
,
J.
Ma
,
X. C.
Hu
,
R. T.
Zhao
,
Z. C.
Zhong
,
Y.
Yu
,
C. H.
Wan
,
Y.
Yang
,
C. W.
Nan
,
X. D.
Bai
,
T. L.
Ren
, and
X. R.
Wang
, arXiv: 10.48550/ARXIV.2106.10837 (2021).
15.
R.
Hann
,
P.
Suitch
, and
J.
Pentecost
, “
Monoclinic crystal structures of ZrO2 and HfO2 refined from x-ray powder diffraction data
,”
J. Am. Ceram. Soc.
68
,
285
286
(
1985
).
16.
J. E.
Jaffe
,
R. A.
Bachorz
, and
M.
Gutowski
, “
Low-temperature polymorphs of ZrO2 and HfO2: A density-functional theory study
,”
Phys. Rev. B
72
,
144107
(
2005
).
17.
C. M.
Fancher
,
L.
Zhao
,
M.
Nelson
,
L.
Bai
,
G.
Shen
, and
J. L.
Jones
, “
Pressure-induced structures of Si-doped HfO2
,”
J. Appl. Phys.
117
,
234102
(
2015
).
18.
J.-H.
Yuan
,
G.-Q.
Mao
,
K.-H.
Xue
,
N.
Bai
,
C.
Wang
,
Y.
Cheng
,
H.
Lyu
,
H.
Sun
,
X.
Wang
, and
X.
Miao
, “
Ferroelectricity in HfO2 from a chemical perspective
,” arXiv:2201.00210 (
2022
).
19.
T.
Mittmann
,
M.
Michailow
,
P. D.
Lomenzo
,
J.
Gärtner
,
M.
Falkowski
,
A.
Kersch
,
T.
Mikolajick
, and
U.
Schroeder
, “
Stabilizing the ferroelectric phase in HfO2-based films sputtered from ceramic targets under ambient oxygen
,”
Nanoscale
13(2)
,
912
–921 (
2021
).
20.
X.
Sang
,
E. D.
Grimley
,
T.
Schenk
,
U.
Schroeder
, and
J. M.
LeBeau
, “
On the structural origins of ferroelectricity in HfO2 thin films
,”
Appl. Phys. Lett.
106
,
162905
(
2015
).
21.
S.
Clima
,
D. J.
Wouters
,
C.
Adelmann
,
T.
Schenk
,
U.
Schroeder
,
M.
Jurczak
, and
G.
Pourtois
, “
Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight
,”
Appl. Phys. Lett.
104
,
092906
(
2014
).
22.
P.
Polakowski
and
J.
Müller
, “
Ferroelectricity in undoped hafnium oxide
,”
Appl. Phys. Lett.
106
,
232905
(
2015
).
23.
P.
Fan
,
Y. K.
Zhang
,
Q.
Yang
,
J.
Jiang
,
L. M.
Jiang
,
M.
Liao
, and
Y. C.
Zhou
, “
Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics
,”
J. Phys. Chem. C
123
,
21743
21750
(
2019
).
24.
S.
Estandía
,
N.
Dix
,
J.
Gazquez
,
I.
Fina
,
J.
Lyu
,
M. F.
Chisholm
,
J.
Fontcuberta
, and
F.
Sánchez
, “
Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress
,”
ACS Appl. Electron. Mater.
1
,
1449
1457
(
2019
).
25.
M.
Hoffmann
,
U.
Schroeder
,
T.
Schenk
,
T.
Shimizu
,
H.
Funakubo
,
O.
Sakata
,
D.
Pohl
,
M.
Drescher
,
C.
Adelmann
,
R.
Materlik
,
A.
Kersch
, and
T.
Mikolajick
, “
Stabilizing the ferroelectric phase in doped hafnium oxide
,”
J. Appl. Phys.
118
,
072006
(
2015
).
26.
T.
Schenk
,
C. M.
Fancher
,
M. H.
Park
,
C.
Richter
,
C.
Künneth
,
A.
Kersch
,
J. L.
Jones
,
T.
Mikolajick
, and
U.
Schroeder
, “
On the origin of the large remanent polarization in La:HfO2
,”
Adv. Electron. Mater.
5
,
1900303
(
2019
).
27.
H. J.
Kim
,
M. H.
Park
,
Y. J.
Kim
,
Y. H.
Lee
,
W.
Jeon
,
T.
Gwon
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
, “
Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer
,”
Appl. Phys. Lett.
105
,
192903
(
2014
).
28.
J.
Wan
,
X.
Chen
,
L.
Ji
,
Z.
Tu
,
H.
Wu
, and
C.
Liu
, “
Ferroelectricity of Hf0.5Zr0.5 O thin films free from the influence of electrodes by using AlO capping layers
,”
IEEE Trans. Electron. Devices
69
(4),
1
6
(
2022
).
29.
Y. H.
Lee
,
H. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
S. D.
Hyun
,
H. W.
Park
,
Y. B.
Lee
,
M. H.
Park
, and
C. S.
Hwang
, “
Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering
,”
Nanotechnology
28
,
305703
(
2017
).
30.
Z.
Dang
,
S.
Lv
,
Z.
Gao
,
M.
Chen
,
Y.
Xu
,
P.
Jiang
,
Y.
Ding
,
P.
Yuan
,
Y.
Wang
,
Y.
Chen
,
Q.
Luo
, and
Y.
Wang
, “
Improved endurance of Hf0.5Zr0.5O2-based ferroelectric capacitor through optimizing the Ti:N ratio in TiN electrode
,”
IEEE Electron Device Lett.
43
(4),
1
(
2022
).
31.
R.
Athle
,
A. E. O.
Persson
,
A.
Irish
,
H.
Menon
,
R.
Timm
, and
M.
Borg
, “
Effects of TiN top electrode texturing on ferroelectricity in Hf1xZrxO2
,”
ACS Appl. Mater. Interfaces
13
,
11089
11095
(
2021
).
32.
Y.
Li
,
R.
Liang
,
B.
Xiong
,
H.
Liu
,
R.
Zhao
,
J.
Li
,
T.
Liu
,
Y.
Pang
,
H.
Tian
,
Y.
Yang
, and
T.-L.
Ren
, “
TiNx/Hf0.5Zr0.5O2/TiNx ferroelectric memory with tunable transparency and suppressed wake-up effect
,”
Appl. Phys. Lett.
114
,
052902
(
2019
).
33.
K.-Y.
Chen
,
P.-H.
Chen
,
R.-W.
Kao
,
Y.-X.
Lin
, and
Y.-H.
Wu
, “
Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors
,”
IEEE Electron Device Lett.
39
,
87
90
(
2018
).
34.
T.
Szyjka
,
L.
Baumgarten
,
T.
Mittmann
,
Y.
Matveyev
,
C.
Schlueter
,
T.
Mikolajick
,
U.
Schroeder
, and
M.
Müller
, “
Enhanced ferroelectric polarization in TiN/HfO2/TiN capacitors by interface design
,”
ACS Appl. Electron. Mater.
2
,
3152
3159
(
2020
).
35.
L.
Baumgarten
,
T.
Szyjka
,
T.
Mittmann
,
M.
Materano
,
Y.
Matveyev
,
C.
Schlueter
,
T.
Mikolajick
,
U.
Schroeder
, and
M.
Müller
, “
Impact of vacancies and impurities on ferroelectricity in PVD- and ALD-grown HfO2 films
,”
Appl. Phys. Lett.
118
,
032903
(
2021
).
36.
B. Y.
Kim
,
H. W.
Park
,
S. D.
Hyun
,
Y. B.
Lee
,
S. H.
Lee
,
M.
Oh
,
S. K.
Ryoo
,
I. S.
Lee
,
S.
Byun
,
D.
Shim
,
D.
Cho
,
M. H.
Park
, and
C. S.
Hwang
, “
Enhanced ferroelectric properties in Hf0.5Zr0.5O2 films using a HfO0.61N0.72 interfacial layer
,”
Adv. Electron. Mater.
8
(6),
2100042
(
2021
).
37.
J. F.
Scott
and
C. A.
Paz de Araujo
, “
Ferroelectric memories
,”
Science
246
,
1400
1405
(
1989
).
38.
E. D.
Grimley
,
T.
Schenk
,
X.
Sang
,
M.
Pešić
,
U.
Schroeder
,
T.
Mikolajick
, and
J. M.
LeBeau
, “
Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films
,”
Adv. Electron. Mater.
2
,
1600173
(
2016
).
39.
T.
Shimizu
,
Y.
Tashiro
,
T.
Mimura
,
T.
Kiguchi
,
T.
Shiraishi
,
T. J.
Konnno
,
O.
Sakata
, and
H.
Funakubo
, “
Electric-field-induced ferroelectricity in 5%Y-doped Hf0.5Zr0.5O2 : Transformation from the paraelectric tetragonal phase to the ferroelectric orthorhombic phase
,”
Phys. Status Solidi Rapid Res. Lett.
15
,
2000589
(
2021
).
40.
P. D.
Lomenzo
,
C.
Richter
,
T.
Mikolajick
, and
U.
Schroeder
, “
Depolarization as driving force in antiferroelectric hafnia and ferroelectric wake-up
,”
ACS Appl. Electron. Mater.
2
,
1583
1595
(
2020
).
41.
M.
Pešić
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
, “
Physical mechanisms behind the field-cycling behavior of HfO2 -based ferroelectric capacitors
,”
Adv. Funct. Mater.
26
,
4601
4612
(
2016
).
42.
D.
Zhou
,
J.
Xu
,
Q.
Li
,
Y.
Guan
,
F.
Cao
,
X.
Dong
,
J.
Müller
,
T.
Schenk
, and
U.
Schröder
, “
Wake-up effects in Si-doped hafnium oxide ferroelectric thin films
,”
Appl. Phys. Lett.
103
,
192904
(
2013
).
43.
P.
Buragohain
,
C.
Richter
,
T.
Schenk
,
H.
Lu
,
T.
Mikolajick
,
U.
Schroeder
, and
A.
Gruverman
, “
Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors
,”
Appl. Phys. Lett.
112
,
222901
(
2018
).
44.
A.
Chouprik
,
M.
Spiridonov
,
S.
Zarubin
,
R.
Kirtaev
,
V.
Mikheev
,
Y.
Lebedinskii
,
S.
Zakharchenko
, and
D.
Negrov
, “
Wake-up in a Hf0.5Zr0.5O2 film: A cycle-by-cycle emergence of the remnant polarization via the domain depinning and the vanishing of the anomalous polarization switching
,”
ACS Appl. Electron. Mater.
1
,
275
287
(
2019
).
45.
H.
Chen
,
H.
Luo
,
X.
Yuan
, and
D.
Zhang
, “
Constructing a correlation between ferroelectricity and grain sizes in Hf0.5Zr0.5O2 ferroelectric thin films
,”
CrystEngComm
24
,
1731
1737
(
2022
).
46.
T.
Shimizu
,
T.
Mimura
,
T.
Kiguchi
,
T.
Shiraishi
,
T.
Konno
,
Y.
Katsuya
,
O.
Sakata
, and
H.
Funakubo
, “
Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films
,”
Appl. Phys. Lett.
113
,
212901
(
2018
).
47.
M.
Lederer
,
T.
Kämpfe
,
R.
Olivo
,
D.
Lehninger
,
C.
Mart
,
S.
Kirbach
,
T.
Ali
,
P.
Polakowski
,
L.
Roy
, and
K.
Seidel
, “
Local crystallographic phase detection and texture mapping in ferroelectric Zr doped HfO2 films by transmission-EBSD
,”
Appl. Phys. Lett.
115
,
222902
(
2019
).
48.
M.
Lederer
,
R.
Olivo
,
D.
Lehninger
,
S.
Abdulazhanov
,
T.
Kämpfe
,
S.
Kirbach
,
C.
Mart
,
K.
Seidel
, and
L. M.
Eng
, “
On the origin of wake-up and antiferroelectric-like behavior in ferroelectric hafnium oxide
,”
Phys. Status Solidi Rapid Res. Lett.
15
,
2100086
(
2021
).
49.
M.
Lederer
,
P.
Bagul
,
D.
Lehninger
,
K.
Mertens
,
A.
Reck
,
R.
Olivo
,
T.
Kämpfe
,
K.
Seidel
, and
L. M.
Eng
, “
Influence of annealing temperature on the structural and electrical properties of Si-doped ferroelectric hafnium oxide
,”
ACS Appl. Electron. Mater.
3
,
4115
4120
(
2021
).
50.
K.
Lee
,
K.
Park
,
H.-J.
Lee
,
M. S.
Song
,
K. C.
Lee
,
J.
Namkung
,
J. H.
Lee
,
J.
Park
, and
S. C.
Chae
, “
Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency
,”
Sci. Rep.
11
,
6290
(
2021
).
51.
S.
Mueller
,
J.
Muller
,
U.
Schroeder
, and
T.
Mikolajick
, “
Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications
,”
IEEE Trans. Device Mater. Reliab.
13
,
93
97
(
2013
).
52.
F.
Zahari
,
F.
Schlichting
,
J.
Strobel
,
S.
Dirkmann
,
J.
Cipo
,
S.
Gauter
,
J.
Trieschmann
,
R.
Marquardt
,
G.
Haberfehlner
,
G.
Kothleitner
,
L.
Kienle
,
T.
Mussenbrock
,
M.
Ziegler
,
H.
Kersten
, and
H.
Kohlstedt
, “
Correlation between sputter deposition parameters and I-V characteristics in double-barrier memristive devices
,”
J. Vac. Sci. Technol. B
37
,
061203
(
2019
).
53.
J.-E.
Sundgren
,
B.-O.
Johansson
,
S.-E.
Karlsson
, and
H.
Hentzell
, “
Mechanisms of reactive sputtering of titanium nitride and titanium carbide II: Morphology and structure
,”
Thin Solid Films
105
,
367
384
(
1983
).
54.
G.
Lim
,
W.
Parrish
,
C.
Ortiz
,
M.
Bellotto
, and
M.
Hart
, “
Grazing incidence synchrotron X-ray diffraction method for analyzing thin films
,”
J. Mater. Res.
2
,
471
477
(
1987
).
55.
T.
Takayama
and
Y.
Matsumoto
, “
Effects of refraction and reflection on analysis of thin films by the grazing-incidence X-ray diffraction method
,”
Adv. in X-ray Anal.
33
,
109
120
(
1989
).
56.
A.
Pandey
,
S.
Dalal
,
S.
Dutta
, and
A.
Dixit
, “
Structural characterization of polycrystalline thin films by X-ray diffraction techniques
,”
J. Mater. Sci. Mater. Electron.
32
,
1341
1368
(
2021
).
57.
J.-E.
Sundgren
, “
Structure and properties of TiN coatings
,”
Thin Solid Films
128
,
21
44
(
1985
).
58.
E. O.
Ristolainen
,
J. M.
Molarius
,
A. S.
Korhonen
, and
V. K.
Lindroos
, “
A study of nitrogen-rich titanium and zirconium nitride films
,”
J. Vac. Sci. Technol. A
5
,
2184
2189
(
1987
).
59.
R.
Qi
,
L.
Pan
,
Y.
Feng
,
J.
Wu
,
W.
Li
, and
Z.
Wang
, “
Evolution of chemical, structural, and mechanical properties of titanium nitride thin films deposited under different nitrogen partial pressure
,”
Results Phys.
19
,
103416
(
2020
).
60.
S. G.
Seo
,
C.-H.
Park
,
H.-Y.
Kim
,
W. H.
Nam
,
M.
Jeong
,
Y.-N.
Choi
,
Y. S.
Lim
,
W.-S.
Seo
,
S.-J.
Kim
,
J. Y.
Lee
, and
Y. S.
Cho
, “
Preparation and visible-light photocatalysis of hollow rock-salt TiO1xNx nanoparticles
,”
J. Mater. Chem. A
1
,
3639
(
2013
).
61.
P. D.
Lomenzo
,
Q.
Takmeel
,
S.
Moghaddam
, and
T.
Nishida
, “
Annealing behavior of ferroelectric Si-doped HfO2 thin films
,”
Thin Solid Films
615
,
139
144
(
2016
).
62.
S.
Logothetidis
,
E.
Meletis
,
G.
Stergioudis
, and
A.
Adjaottor
, “
Room temperature oxidation behavior of TiN thin films
,”
Thin Solid Films
338
,
304
313
(
1999
).
63.
N.
Marchack
,
L.
Buzi
,
D. B.
Farmer
,
H.
Miyazoe
,
J. M.
Papalia
,
H.
Yan
,
G.
Totir
, and
S. U.
Engelmann
, “
Plasma processing for advanced microelectronics beyond CMOS
,”
J. Appl. Phys.
130
,
080901
(
2021
).
64.
Y.
Matveyev
,
D.
Negrov
,
A.
Chernikova
,
Y.
Lebedinskii
,
R.
Kirtaev
,
S.
Zarubin
,
E.
Suvorova
,
A.
Gloskovskii
, and
A.
Zenkevich
, “
Effect of polarization reversal in ferroelectric TiN/Hf0.5Zr0.5O2/TiN devices on electronic conditions at interfaces studied in operando by hard x-ray photoemission spectroscopy
,”
ACS Appl. Mater. Interfaces
9
,
43370
43376
(
2017
).
65.
S.
Im
,
S.-Y.
Kang
,
Y.
Kim
,
J. H.
Kim
,
J.-P.
Im
,
S.-M.
Yoon
,
S. E.
Moon
, and
J.
Woo
, “
Ferroelectric switching in trilayer Al2O3/HfZrOx/Al2O3 structure
,”
Micromachines
11
,
910
(
2020
).
66.
S. S.
Fields
,
S. W.
Smith
,
P. J.
Ryan
,
S. T.
Jaszewski
,
I. A.
Brummel
,
A.
Salanova
,
G.
Esteves
,
S. L.
Wolfley
,
M. D.
Henry
,
P. S.
Davids
, and
J. F.
Ihlefeld
, “
Phase-exchange-driven wake-up and fatigue in ferroelectric hafnium zirconium oxide films
,”
ACS Appl. Mater. Interfaces
12
,
26577
26585
(
2020
).
67.
M.
Yan
,
S.
Luo
,
G.
Schaffer
, and
M.
Qian
, “
TEM and XRD characterisation of commercially pure-Ti made by powder metallurgy and casting
,”
Mater. Lett.
72
,
64
67
(
2012
).
68.
P. D.
Lomenzo
,
C.-C.
Chung
,
C.
Zhou
,
J. L.
Jones
, and
T.
Nishida
, “
Doped Hf0.5Zr0.5O2 for high efficiency integrated supercapacitors
,”
Appl. Phys. Lett.
110
,
232904
(
2017
).
69.
Y.
Cheng
,
Z.
Gao
,
K. H.
Ye
,
H. W.
Park
,
Y.
Zheng
,
Y.
Zheng
,
J.
Gao
,
M. H.
Park
,
J.-H.
Choi
,
K.-H.
Xue
,
C. S.
Hwang
, and
H.
Lyu
, “
Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film
,”
Nat. Commun.
13
,
645
(
2022
).
70.
S.
Petzold
,
A.
Zintler
,
R.
Eilhardt
,
E.
Piros
,
N.
Kaiser
,
S. U.
Sharath
,
T.
Vogel
,
M.
Major
,
K. P.
McKenna
,
L.
Molina-Luna
, and
L.
Alff
, “
Forming-free grain boundary engineered hafnium oxide resistive random access memory devices
,”
Adv. Electron. Mater.
5
,
1900484
(
2019
).
71.
A.
Christensen
and
E. A.
Carter
, “
First-principles study of the surfaces of zirconia
,”
Phys. Rev. B
58
,
8050
8064
(
1998
).

Supplementary Material

You do not currently have access to this content.